The possibility of N–P codoping to realize P type β-Ga2O3

Superlattices and Microstructures - Tập 141 - Trang 106502 - 2020
Ling Li1, Fei Liao2, Xintong Hu2
1College of Materials Science and Engineering, Chongqing University of Technology, Chongqing, 400054, China
2School of Science, Chongqing University of Technology, Chongqing 400054, China

Tài liệu tham khảo

Qian, 2017, Mg-doped p-type β-Ga2O3 thin film for solar-blind ultraviolet photodetector, Mater. Lett., 209, 558, 10.1016/j.matlet.2017.08.052 Alema, 2017, Solar blind photodetector based on epitaxial zinc doped Ga2O3 thin film, Phys. Status Solidi, 5 Pearton, 2018, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS, J. Appl. Phys., 124, 10.1063/1.5062841 Choi, 2018, Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate, Results in Physics, 9, 1170, 10.1016/j.rinp.2018.04.042 Wong, 2016, Field-Plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V, IEEE Electron. Device Lett., 37, 212, 10.1109/LED.2015.2512279 Kumar, 2019, A performance comparison between β-Ga2O3 and GaN HEMTs, IEEE, Transactions on Electron Devices, 66, 3310, 10.1109/TED.2019.2924453 Fu, 2019, A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism,, J. Semiconduct., 40, 10.1088/1674-4926/40/1/011804 Roy, 1952, Polymorphism of Ga2O3 and the system Ga2O3—H2O, J. Am. Chem. Soc., 74, 719, 10.1021/ja01123a039 Tippins, 1965, Optical absorption and photoconductivity in the band edge of β-Ga2O3, Phys. Rev, 140, 10.1103/PhysRev.140.A316 Lovejoy, 2009, Surface morphology and electronic structure of bulk single crystal β-Ga2O3(100), Appl. Phys. Lett., 94, 10.1063/1.3086392 Ueda, 2001, Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition, J. Appl. Phys., 89, 10.1063/1.1337587 Jangir, 2016, Correlation between surface modification and photoluminescence properties of β-Ga2O3 nanostructures, AIP Adv., 6, 10.1063/1.4944908 Higashiwaki, 2014, Development of gallium oxide power devices, Phys. Status Solidi, 211 Higashiwaki, 2012, Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3(010) substrates, Appl. Phys. Lett., 100, 10.1063/1.3674287 Wort, 2008, Diamond as an electronic material, Mater. Today, 11, 22, 10.1016/S1369-7021(07)70349-8 Víllora, 2004, Large-size β−Ga2O3 single crystals and wafers, J. Cryst. Growth, 88 Galazka, 2010, Czochralski growth and characterization of β-Ga2O3 single crystals, Cryst. Res. Technol., 45, 10.1002/crat.201000341 Galazka, 2014, On the bulk β−ga2o3 single crystals grown by the czochralski method, J. Cryst. Growth, 10.1016/j.jcrysgro.2014.07.021 Aida, 2015, Growth of Ga2O3 single crystals by the edge-defined, film fed growth method, Jpn. J. Appl. Phys., 47 Hoshikawa, 2016, Grown of beta-Ga2O3 single crystals using vertical Bridgmam method in ambient air, J. Cryst. Growth, 447, 10.1016/j.jcrysgro.2016.04.022 Kumar, 2016, Study of photoconduction properties of CVD grown β-Ga2O3 nanowires, J. Alloys Compd., 683, 143, 10.1016/j.jallcom.2016.05.079 Oshima, 2015, Quasi-hetero epitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy, J. Cryst. Growth, 410, 53, 10.1016/j.jcrysgro.2014.10.038 Murakami, 2015, Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy, APEX, 8, 1 Green, 2016, 3.8 MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs, IEEE Electron. Device Lett., 741 Konishi, 2017, 1-kV vertical Ga2O3 field-plated Schottky barrier diodes, Appl. Phys. Lett., 110, 10.1063/1.4977857 Zhang, 2018, Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures, Appl. Phys. Lett., 112 Yan, 2008, Doping asymmetry in wide-bandgap semiconductors: origins and solutions, Physica Status Solidi (B) Basic Research, 245, 641, 10.1002/pssb.200743334 Scanlon, 2009, Acceptor levels in p-type Cu2O: rationalizing theory and Experiment, Phys. Rev. Lett., 103, 1, 10.1103/PhysRevLett.103.096405 Varley, 2010, Oxygen vacancies and donor impurities in β-Ga2O3, Appl. Phys. Lett., 97, 10, 10.1063/1.3499306 Lyons, 2018, A survey of acceptor dopants for β-Ga2O3, Semicond. Sci. Technol., 33, 10.1088/1361-6641/aaba98 Kyrtsos, 2018, On the feasibility of p-type Ga2O3, Appl. Phys. Lett., 112, 10.1063/1.5009423 Liu, 2010, Fabrication and characteristics of N-doped β-Ga2O3 nanowires, Appl. Phys. A, 98, 10.1007/s00339-009-5538-y Chang, 2011, Ultrahigh-density β-Ga2O3 ∕ N–doped β-Ga2O3 Schottky and p-n nanowire junctions: synthesis and electrical transport properties, J. Electrochem. Soc., 158, D136, 10.1149/1.3530787 Wong, 2018, Acceptor doping of β-Ga2O3 by Mg and N ion implantations, Appl. Phys. Lett., 113, 10.1063/1.5050040 Feng, 2015, Mg-doped β-Ga2O3 films with tunable optical band gap prepared on MgO (110) substrates by metal-organic chemical vapor deposition, Mater. Sci. Semicond. Process., 34, 52, 10.1016/j.mssp.2015.01.001 Su, 2019, Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity, J. Alloys Compd., 10.1016/j.jallcom.2018.12.199 Kananen, 2017, Self-trapped holes in β-Ga2O3 crystals, J. Appl. Phys., 122, 10.1063/1.5007095 Sun, 2019, Defect stability and electronic structure of doped β-Ga2O3: a comprehensive ab initio study, Journal of Alloys and Compounds Joseph, 1999, p-Type electrical conduction in ZnO thin films by Ga and N codoping, Jpn. J. Appl. Phys., 38, L 1205, 10.1143/JJAP.38.L1205 Zhang, 2016, A brief review of co-doping, Front. Physiol., 11 Zhang, 2012, A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N–Zn co-doped β-Ga2O3, Physica B, 407, 1227, 10.1016/j.physb.2012.01.107 Tang, 2016, Electronic structure and optical property of metal doped Ga2O3: a first principles study, RSC Adv., 6 Peelaers, 2016, Doping of Ga2O3 with transition metals, Phys. Rev. B, 94, 10.1103/PhysRevB.94.195203 Wang, 2019, The electronic structure and magnetic property of the Mn doped β-Ga2O3, Superlattice. Microst., 10.1016/j.spmi.2018.12.001 Geller, 1960, Crystal structure of β-Ga2O3, J. Chem. Phys., 33, 10.1063/1.1731237 Guo, 2019, Superlattices and Microstructures SnTe monolayer : tuning its electronic properties with doping, Superlattice. Microst., 130, 12, 10.1016/j.spmi.2019.04.008 Wang, 2019, First-principles study of electronic, magnetic and optical properties of N doping topological insulator Bi2Se3, Superlattice. Microst., 132 Knight, 2018, Electron effective mass in Sn-doped monoclinic single crystal β−gallium oxide determined by mid-infrared optical Hall effect, Appl. Phys. Lett., 112, 10.1063/1.5011192 Peelaers, 2015, Brillouin zone and band structure of β- Ga2O3, Phys. Status Solidi B, 252, 10.1002/pssb.201451551 Yamaguchi, 2004, First principles study on electronic structure of β-Ga2O3, Solid State Commun., 131, 10.1016/j.ssc.2004.07.030