The possibility of N–P codoping to realize P type β-Ga2O3
Tài liệu tham khảo
Qian, 2017, Mg-doped p-type β-Ga2O3 thin film for solar-blind ultraviolet photodetector, Mater. Lett., 209, 558, 10.1016/j.matlet.2017.08.052
Alema, 2017, Solar blind photodetector based on epitaxial zinc doped Ga2O3 thin film, Phys. Status Solidi, 5
Pearton, 2018, Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS, J. Appl. Phys., 124, 10.1063/1.5062841
Choi, 2018, Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate, Results in Physics, 9, 1170, 10.1016/j.rinp.2018.04.042
Wong, 2016, Field-Plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V, IEEE Electron. Device Lett., 37, 212, 10.1109/LED.2015.2512279
Kumar, 2019, A performance comparison between β-Ga2O3 and GaN HEMTs, IEEE, Transactions on Electron Devices, 66, 3310, 10.1109/TED.2019.2924453
Fu, 2019, A review of β-Ga2O3 single crystal defects, their effects on device performance and their formation mechanism,, J. Semiconduct., 40, 10.1088/1674-4926/40/1/011804
Roy, 1952, Polymorphism of Ga2O3 and the system Ga2O3—H2O, J. Am. Chem. Soc., 74, 719, 10.1021/ja01123a039
Tippins, 1965, Optical absorption and photoconductivity in the band edge of β-Ga2O3, Phys. Rev, 140, 10.1103/PhysRev.140.A316
Lovejoy, 2009, Surface morphology and electronic structure of bulk single crystal β-Ga2O3(100), Appl. Phys. Lett., 94, 10.1063/1.3086392
Ueda, 2001, Epitaxial growth of transparent p-type conducting CuGaO2 thin films on sapphire (001) substrates by pulsed laser deposition, J. Appl. Phys., 89, 10.1063/1.1337587
Jangir, 2016, Correlation between surface modification and photoluminescence properties of β-Ga2O3 nanostructures, AIP Adv., 6, 10.1063/1.4944908
Higashiwaki, 2014, Development of gallium oxide power devices, Phys. Status Solidi, 211
Higashiwaki, 2012, Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3(010) substrates, Appl. Phys. Lett., 100, 10.1063/1.3674287
Wort, 2008, Diamond as an electronic material, Mater. Today, 11, 22, 10.1016/S1369-7021(07)70349-8
Víllora, 2004, Large-size β−Ga2O3 single crystals and wafers, J. Cryst. Growth, 88
Galazka, 2010, Czochralski growth and characterization of β-Ga2O3 single crystals, Cryst. Res. Technol., 45, 10.1002/crat.201000341
Galazka, 2014, On the bulk β−ga2o3 single crystals grown by the czochralski method, J. Cryst. Growth, 10.1016/j.jcrysgro.2014.07.021
Aida, 2015, Growth of Ga2O3 single crystals by the edge-defined, film fed growth method, Jpn. J. Appl. Phys., 47
Hoshikawa, 2016, Grown of beta-Ga2O3 single crystals using vertical Bridgmam method in ambient air, J. Cryst. Growth, 447, 10.1016/j.jcrysgro.2016.04.022
Kumar, 2016, Study of photoconduction properties of CVD grown β-Ga2O3 nanowires, J. Alloys Compd., 683, 143, 10.1016/j.jallcom.2016.05.079
Oshima, 2015, Quasi-hetero epitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy, J. Cryst. Growth, 410, 53, 10.1016/j.jcrysgro.2014.10.038
Murakami, 2015, Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy, APEX, 8, 1
Green, 2016, 3.8 MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs, IEEE Electron. Device Lett., 741
Konishi, 2017, 1-kV vertical Ga2O3 field-plated Schottky barrier diodes, Appl. Phys. Lett., 110, 10.1063/1.4977857
Zhang, 2018, Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures, Appl. Phys. Lett., 112
Yan, 2008, Doping asymmetry in wide-bandgap semiconductors: origins and solutions, Physica Status Solidi (B) Basic Research, 245, 641, 10.1002/pssb.200743334
Scanlon, 2009, Acceptor levels in p-type Cu2O: rationalizing theory and Experiment, Phys. Rev. Lett., 103, 1, 10.1103/PhysRevLett.103.096405
Varley, 2010, Oxygen vacancies and donor impurities in β-Ga2O3, Appl. Phys. Lett., 97, 10, 10.1063/1.3499306
Lyons, 2018, A survey of acceptor dopants for β-Ga2O3, Semicond. Sci. Technol., 33, 10.1088/1361-6641/aaba98
Kyrtsos, 2018, On the feasibility of p-type Ga2O3, Appl. Phys. Lett., 112, 10.1063/1.5009423
Liu, 2010, Fabrication and characteristics of N-doped β-Ga2O3 nanowires, Appl. Phys. A, 98, 10.1007/s00339-009-5538-y
Chang, 2011, Ultrahigh-density β-Ga2O3 ∕ N–doped β-Ga2O3 Schottky and p-n nanowire junctions: synthesis and electrical transport properties, J. Electrochem. Soc., 158, D136, 10.1149/1.3530787
Wong, 2018, Acceptor doping of β-Ga2O3 by Mg and N ion implantations, Appl. Phys. Lett., 113, 10.1063/1.5050040
Feng, 2015, Mg-doped β-Ga2O3 films with tunable optical band gap prepared on MgO (110) substrates by metal-organic chemical vapor deposition, Mater. Sci. Semicond. Process., 34, 52, 10.1016/j.mssp.2015.01.001
Su, 2019, Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity, J. Alloys Compd., 10.1016/j.jallcom.2018.12.199
Kananen, 2017, Self-trapped holes in β-Ga2O3 crystals, J. Appl. Phys., 122, 10.1063/1.5007095
Sun, 2019, Defect stability and electronic structure of doped β-Ga2O3: a comprehensive ab initio study, Journal of Alloys and Compounds
Joseph, 1999, p-Type electrical conduction in ZnO thin films by Ga and N codoping, Jpn. J. Appl. Phys., 38, L 1205, 10.1143/JJAP.38.L1205
Zhang, 2016, A brief review of co-doping, Front. Physiol., 11
Zhang, 2012, A comparison of electronic structure and optical properties between N-doped β-Ga2O3 and N–Zn co-doped β-Ga2O3, Physica B, 407, 1227, 10.1016/j.physb.2012.01.107
Tang, 2016, Electronic structure and optical property of metal doped Ga2O3: a first principles study, RSC Adv., 6
Peelaers, 2016, Doping of Ga2O3 with transition metals, Phys. Rev. B, 94, 10.1103/PhysRevB.94.195203
Wang, 2019, The electronic structure and magnetic property of the Mn doped β-Ga2O3, Superlattice. Microst., 10.1016/j.spmi.2018.12.001
Geller, 1960, Crystal structure of β-Ga2O3, J. Chem. Phys., 33, 10.1063/1.1731237
Guo, 2019, Superlattices and Microstructures SnTe monolayer : tuning its electronic properties with doping, Superlattice. Microst., 130, 12, 10.1016/j.spmi.2019.04.008
Wang, 2019, First-principles study of electronic, magnetic and optical properties of N doping topological insulator Bi2Se3, Superlattice. Microst., 132
Knight, 2018, Electron effective mass in Sn-doped monoclinic single crystal β−gallium oxide determined by mid-infrared optical Hall effect, Appl. Phys. Lett., 112, 10.1063/1.5011192
Peelaers, 2015, Brillouin zone and band structure of β- Ga2O3, Phys. Status Solidi B, 252, 10.1002/pssb.201451551
Yamaguchi, 2004, First principles study on electronic structure of β-Ga2O3, Solid State Commun., 131, 10.1016/j.ssc.2004.07.030