Minimizing adjusted simple terms in the consensus reaching process with hesitant linguistic assessments in group decision making

Information Sciences - Tập 297 - Trang 95-117 - 2015
Yucheng Dong1, Xia Chen1, Francisco Herrera2,3
1Business School, Sichuan University, Chengdu, 610065, China
2Department of Computer Science and Artificial Intelligence, University of Granada, Granada 18071, Spain
3Faculty of Computing and Information Technology – North Jeddah, King Abdulaziz University, 21589 Jeddah, Saudi Arabia

Tài liệu tham khảo

Agell, 2012, Ranking multi-attribute alternatives on the basis of linguistic labels in group decisions, Inf. Sci., 209, 49, 10.1016/j.ins.2012.05.005 Beg, 2013, TOPSIS for hesitant fuzzy linguistic term sets, Int. J. Intell. Syst., 28, 1162, 10.1002/int.21623 Ben-Arieh, 2007, Multi-criteria group consensus under linear cost opinion elasticity, Decis. Support Syst., 43, 713, 10.1016/j.dss.2006.11.009 Ben-Arieh, 2009, Minimum cost consensus with quadratic cost functions, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 39, 210, 10.1109/TSMCA.2008.2006373 Bordogna, 1997, A linguistic modeling of consensus in group decision making based on OWA operators, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 27, 126, 10.1109/3468.553232 Chiclana, 2013, A statistical comparative study of different similarity measures of consensus in group decision making, Inf. Sci., 221, 110, 10.1016/j.ins.2012.09.014 Degani, 1988, The problem of linguistic approximation in clinical decision making, Int. J. Approx. Reason., 2, 143, 10.1016/0888-613X(88)90105-3 Delgado, 1993, On aggregation operations of linguistic labels, Int. J. Intell. Syst., 8, 351, 10.1002/int.4550080303 Dong, 2010, The OWA-based consensus operator under linguistic representation models using position indexes, Eur. J. Oper. Res., 203, 455, 10.1016/j.ejor.2009.08.013 Dong, 2009, Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model, IEEE Trans. Fuzzy Syst., 17, 1366, 10.1109/TFUZZ.2009.2032172 Dong, 2013, Linguistic computational model based on 2-tuples and intervals, IEEE Trans. Fuzzy Syst., 21, 1006, 10.1109/TFUZZ.2013.2239650 Falcó, 2014, Allowing agents to be imprecise: a proposal using multiple linguistic terms, Inf. Sci., 258, 249, 10.1016/j.ins.2013.08.028 Herrera, 2009, Computing with words in decision making: foundations, trends and prospects, Fuzzy Optim. Decis. Mak., 8, 337, 10.1007/s10700-009-9065-2 Herrera, 2000, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8, 746, 10.1109/91.890332 Herrera-Viedma, 2002, A consensus model for multiperson decision making with different preference structures, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 32, 394, 10.1109/TSMCA.2002.802821 Herrera-Viedma, 2014, A review of soft consensus models in a fuzzy environment, Inf. Fusion, 17, 4, 10.1016/j.inffus.2013.04.002 Kacprzyk, 1988, A “soft” measure of consensus in the setting of partial (fuzzy) preferences, Eur. J. Oper. Res., 34, 316, 10.1016/0377-2217(88)90152-X Kacprzyk, 1997 Lehrer, 1981 Liu, 2014, A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making, Inf. Sci., 258, 220, 10.1016/j.ins.2013.07.027 Ma, 2007, A fuzzy-set approach to treat determinacy and consistency of linguistic terms in multi-criteria decision making, Int. J. Approx. Reason., 44, 165, 10.1016/j.ijar.2006.07.007 Martínez, 2012, An overview on the 2-tuple linguistic model for computing with words in decision making: extensions, applications and challenges, Inf. Sci., 207, 1, 10.1016/j.ins.2012.04.025 Massanet, 2014, A new linguistic computational model based on discrete fuzzy numbers for computing with words, Inf. Sci., 258, 277, 10.1016/j.ins.2013.06.055 Mata, 2009, An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context, IEEE Trans. Fuzzy Syst., 17, 279, 10.1109/TFUZZ.2009.2013457 Mendel, 2002, An architecture for making judgments using computing with words, Int. J. Appl. Math. Comput. Sci., 12, 325 Mendel, 2006, Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems, IEEE Trans. Fuzzy Syst., 14, 781, 10.1109/TFUZZ.2006.881441 Miller, 1956, The magical number seven plus or minus two: some limits on our capacity of processing information, Psychol. Rev., 63, 81, 10.1037/h0043158 Palomares, 2014, A consensus model to detect and manage non-cooperative behaviors in large scale group decision making, IEEE Trans. Fuzzy Syst., 22, 516, 10.1109/TFUZZ.2013.2262769 Palomares, 2014, Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study, Inf. Fusion, 20, 252, 10.1016/j.inffus.2014.03.002 Pedrycz, 2011 Rodríguez, 2012, Hesitant fuzzy linguistic term set for decision making, Fuzzy Sets Syst., 20, 109, 10.1109/TFUZZ.2011.2170076 Rodríguez, 2013, A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets, Inf. Sci., 241, 28, 10.1016/j.ins.2013.04.006 Rodríguez, 2014, Hesitant fuzzy sets: state of the art and future directions, Int. J. Intell. Syst., 29, 495, 10.1002/int.21654 Roselló, 2010, Measuring consensus in group decisions by means of qualitative reasoning, Int. J. Approx. Reason., 51, 441, 10.1016/j.ijar.2010.01.002 Thomas, 1963, Effects of group size, Psychol. Bull., 60, 371, 10.1037/h0047169 Torra, 2010, Hesitant fuzzy sets, Int. J. Intell. Syst., 25, 529 Wang, 2006, A new version of 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 14, 435, 10.1109/TFUZZ.2006.876337 Wei, 2014, Operators and comparisons of hesitant fuzzy linguistic term sets, IEEE Trans. Fuzzy Syst., 22, 575, 10.1109/TFUZZ.2013.2269144 Wu, 2007, Aggregation using the linguistic weighted average and interval type-2 fuzzy sets, IEEE Trans. Fuzzy Syst., 15, 1145, 10.1109/TFUZZ.2007.896325 Wu, 2012, Enhanced interval approach for encoding words into interval type-2 fuzzy sets and its convergence analysis, IEEE Trans. Fuzzy Syst., 20, 499, 10.1109/TFUZZ.2011.2177272 Xu, 2004, A method based on linguistic aggregation operators for group decision making with linguistic preference relations, Inf. Sci., 166, 19, 10.1016/j.ins.2003.10.006 Yager, 1981, A new methodology for ordinal multiobjective decisions based on fuzzy sets, Decis. Sci., 12, 589, 10.1111/j.1540-5915.1981.tb00111.x Yager, 2007, Aggregation of ordinal information, Fuzzy Optim. Decis. Making, 6, 199, 10.1007/s10700-007-9008-8 Zadrozny, 2006, Computing with words for text processing: an approach to the text categorization, Inf. Sci., 176, 415, 10.1016/j.ins.2005.07.017 Q Zhang, 2014, Consistency and consensus measures for linguistic preference relations based on distribution assessments, Inf. Fusion, 17, 46, 10.1016/j.inffus.2012.01.006 Zhang, 2011, Minimum-cost consensus models under aggregation operators, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 41, 1253, 10.1109/TSMCA.2011.2113336 Zhang, 2013, Maximum expert consensus models with linear cost function and aggregation operators, Comput. Ind. Eng., 66, 147, 10.1016/j.cie.2013.06.001 Zhu, 2014, Consistency measures for hesitant fuzzy linguistic preference relations, IEEE Trans. Fuzzy Syst., 22, 35, 10.1109/TFUZZ.2013.2245136