Minimizing adjusted simple terms in the consensus reaching process with hesitant linguistic assessments in group decision making
Tài liệu tham khảo
Agell, 2012, Ranking multi-attribute alternatives on the basis of linguistic labels in group decisions, Inf. Sci., 209, 49, 10.1016/j.ins.2012.05.005
Beg, 2013, TOPSIS for hesitant fuzzy linguistic term sets, Int. J. Intell. Syst., 28, 1162, 10.1002/int.21623
Ben-Arieh, 2007, Multi-criteria group consensus under linear cost opinion elasticity, Decis. Support Syst., 43, 713, 10.1016/j.dss.2006.11.009
Ben-Arieh, 2009, Minimum cost consensus with quadratic cost functions, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 39, 210, 10.1109/TSMCA.2008.2006373
Bordogna, 1997, A linguistic modeling of consensus in group decision making based on OWA operators, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 27, 126, 10.1109/3468.553232
Chiclana, 2013, A statistical comparative study of different similarity measures of consensus in group decision making, Inf. Sci., 221, 110, 10.1016/j.ins.2012.09.014
Degani, 1988, The problem of linguistic approximation in clinical decision making, Int. J. Approx. Reason., 2, 143, 10.1016/0888-613X(88)90105-3
Delgado, 1993, On aggregation operations of linguistic labels, Int. J. Intell. Syst., 8, 351, 10.1002/int.4550080303
Dong, 2010, The OWA-based consensus operator under linguistic representation models using position indexes, Eur. J. Oper. Res., 203, 455, 10.1016/j.ejor.2009.08.013
Dong, 2009, Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model, IEEE Trans. Fuzzy Syst., 17, 1366, 10.1109/TFUZZ.2009.2032172
Dong, 2013, Linguistic computational model based on 2-tuples and intervals, IEEE Trans. Fuzzy Syst., 21, 1006, 10.1109/TFUZZ.2013.2239650
Falcó, 2014, Allowing agents to be imprecise: a proposal using multiple linguistic terms, Inf. Sci., 258, 249, 10.1016/j.ins.2013.08.028
Herrera, 2009, Computing with words in decision making: foundations, trends and prospects, Fuzzy Optim. Decis. Mak., 8, 337, 10.1007/s10700-009-9065-2
Herrera, 2000, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 8, 746, 10.1109/91.890332
Herrera-Viedma, 2002, A consensus model for multiperson decision making with different preference structures, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 32, 394, 10.1109/TSMCA.2002.802821
Herrera-Viedma, 2014, A review of soft consensus models in a fuzzy environment, Inf. Fusion, 17, 4, 10.1016/j.inffus.2013.04.002
Kacprzyk, 1988, A “soft” measure of consensus in the setting of partial (fuzzy) preferences, Eur. J. Oper. Res., 34, 316, 10.1016/0377-2217(88)90152-X
Kacprzyk, 1997
Lehrer, 1981
Liu, 2014, A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making, Inf. Sci., 258, 220, 10.1016/j.ins.2013.07.027
Ma, 2007, A fuzzy-set approach to treat determinacy and consistency of linguistic terms in multi-criteria decision making, Int. J. Approx. Reason., 44, 165, 10.1016/j.ijar.2006.07.007
Martínez, 2012, An overview on the 2-tuple linguistic model for computing with words in decision making: extensions, applications and challenges, Inf. Sci., 207, 1, 10.1016/j.ins.2012.04.025
Massanet, 2014, A new linguistic computational model based on discrete fuzzy numbers for computing with words, Inf. Sci., 258, 277, 10.1016/j.ins.2013.06.055
Mata, 2009, An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context, IEEE Trans. Fuzzy Syst., 17, 279, 10.1109/TFUZZ.2009.2013457
Mendel, 2002, An architecture for making judgments using computing with words, Int. J. Appl. Math. Comput. Sci., 12, 325
Mendel, 2006, Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems, IEEE Trans. Fuzzy Syst., 14, 781, 10.1109/TFUZZ.2006.881441
Miller, 1956, The magical number seven plus or minus two: some limits on our capacity of processing information, Psychol. Rev., 63, 81, 10.1037/h0043158
Palomares, 2014, A consensus model to detect and manage non-cooperative behaviors in large scale group decision making, IEEE Trans. Fuzzy Syst., 22, 516, 10.1109/TFUZZ.2013.2262769
Palomares, 2014, Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study, Inf. Fusion, 20, 252, 10.1016/j.inffus.2014.03.002
Pedrycz, 2011
Rodríguez, 2012, Hesitant fuzzy linguistic term set for decision making, Fuzzy Sets Syst., 20, 109, 10.1109/TFUZZ.2011.2170076
Rodríguez, 2013, A group decision making model dealing with comparative linguistic expressions based on hesitant fuzzy linguistic term sets, Inf. Sci., 241, 28, 10.1016/j.ins.2013.04.006
Rodríguez, 2014, Hesitant fuzzy sets: state of the art and future directions, Int. J. Intell. Syst., 29, 495, 10.1002/int.21654
Roselló, 2010, Measuring consensus in group decisions by means of qualitative reasoning, Int. J. Approx. Reason., 51, 441, 10.1016/j.ijar.2010.01.002
Thomas, 1963, Effects of group size, Psychol. Bull., 60, 371, 10.1037/h0047169
Torra, 2010, Hesitant fuzzy sets, Int. J. Intell. Syst., 25, 529
Wang, 2006, A new version of 2-tuple fuzzy linguistic representation model for computing with words, IEEE Trans. Fuzzy Syst., 14, 435, 10.1109/TFUZZ.2006.876337
Wei, 2014, Operators and comparisons of hesitant fuzzy linguistic term sets, IEEE Trans. Fuzzy Syst., 22, 575, 10.1109/TFUZZ.2013.2269144
Wu, 2007, Aggregation using the linguistic weighted average and interval type-2 fuzzy sets, IEEE Trans. Fuzzy Syst., 15, 1145, 10.1109/TFUZZ.2007.896325
Wu, 2012, Enhanced interval approach for encoding words into interval type-2 fuzzy sets and its convergence analysis, IEEE Trans. Fuzzy Syst., 20, 499, 10.1109/TFUZZ.2011.2177272
Xu, 2004, A method based on linguistic aggregation operators for group decision making with linguistic preference relations, Inf. Sci., 166, 19, 10.1016/j.ins.2003.10.006
Yager, 1981, A new methodology for ordinal multiobjective decisions based on fuzzy sets, Decis. Sci., 12, 589, 10.1111/j.1540-5915.1981.tb00111.x
Yager, 2007, Aggregation of ordinal information, Fuzzy Optim. Decis. Making, 6, 199, 10.1007/s10700-007-9008-8
Zadrozny, 2006, Computing with words for text processing: an approach to the text categorization, Inf. Sci., 176, 415, 10.1016/j.ins.2005.07.017
Q Zhang, 2014, Consistency and consensus measures for linguistic preference relations based on distribution assessments, Inf. Fusion, 17, 46, 10.1016/j.inffus.2012.01.006
Zhang, 2011, Minimum-cost consensus models under aggregation operators, IEEE Trans. Syst. Man Cybern., Part A: Syst. Hum., 41, 1253, 10.1109/TSMCA.2011.2113336
Zhang, 2013, Maximum expert consensus models with linear cost function and aggregation operators, Comput. Ind. Eng., 66, 147, 10.1016/j.cie.2013.06.001
Zhu, 2014, Consistency measures for hesitant fuzzy linguistic preference relations, IEEE Trans. Fuzzy Syst., 22, 35, 10.1109/TFUZZ.2013.2245136