Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications

Journal of Materials Chemistry A - Tập 4 Số 5 - Trang 1637-1646
Lijing Xie1,2,3,4,5, Guohua Sun1,2,3,4,5, Fangyuan Su1,2,3,4,5, Xiaoqian Guo1,2,3,4,5, Qingqiang Kong1,2,3,4,5, Xiaoming Li1,2,3,4,5, Xianhong Huang1,2,3,4,5, Liu Wan1,2,3,4,5, Wenliang Song4,6,7, Kaixi Li1,2,3,4,5, Chunxiang Lv1,2,3,4,5, Cheng‐Meng Chen1,2,3,4,5
1Chinese Academy of sciences
2Institute of Coal Chemistry
3Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
4PR China
5Taiyuan 030001
6ShanXi XinHua Chemical Co., Ltd., Taiyuan 030008, PR China
7Taiyuan 030008

Tóm tắt

Hierarchical porous carbon microtubes derived from willow catkins exhibited excellent electrochemical performances in both aqueous and organic electrolytes.

Từ khóa


Tài liệu tham khảo

Zhang, 2011, Adv. Mater., 23, 3387, 10.1002/adma.201100344

Zhang, 2009, Chem. Soc. Rev., 38, 2520, 10.1039/b813846j

Simon, 2008, Nat. Mater., 7, 845, 10.1038/nmat2297

Zhai, 2011, Adv. Mater., 23, 4828, 10.1002/adma.201100984

Xu, 2010, J. Power Sources, 195, 2118, 10.1016/j.jpowsour.2009.09.077

Kang, 2012, ACS Nano, 6, 6400, 10.1021/nn301971r

Kong, 2013, J. Phys. Chem. C, 117, 15496, 10.1021/jp403497u

Chen, 2012, J. Mater. Chem., 22, 14076, 10.1039/c2jm31426f

Su, 2011, Energy Environ. Sci., 4, 717, 10.1039/C0EE00277A

Zhao, 2012, Nano Energy, 1, 624, 10.1016/j.nanoen.2012.04.003

Chou, 2014, ChemSusChem, 7, 841, 10.1002/cssc.201301014

Wang, 2009, Angew. Chem., Int. Ed., 48, 1525, 10.1002/anie.200990036

Hulicova-Jurcakova, 2009, Adv. Funct. Mater., 19, 438, 10.1002/adfm.200801236

Jeong, 2011, Nano Lett., 11, 2472, 10.1021/nl2009058

Kim, 2007, Adv. Mater., 19, 2341, 10.1002/adma.200602184

Yan, 2010, Electrochem. Commun., 12, 1279, 10.1016/j.elecom.2010.06.037

Ghosh, 2007, Prog. Polym. Sci., 32, 1344, 10.1016/j.progpolymsci.2007.07.002

Jurewicz, 2010, Energy Fuels, 24, 3429, 10.1021/ef901554j

Qian, 2014, Energy Environ. Sci., 7, 379, 10.1039/C3EE43111H

Biswal, 2013, Energy Environ. Sci., 6, 1249, 10.1039/c3ee22325f

Sevilla, 2014, ACS Nano, 8, 5069, 10.1021/nn501124h

Xu, 2014, Sci. Rep., 4

Wang, 2011, J. Power Sources, 196, 5756, 10.1016/j.jpowsour.2011.02.049

Zhang, 2012, ChemSusChem, 5, 818, 10.1002/cssc.201100571

Yuan, 2011, Nanoscale, 3, 529, 10.1039/C0NR00423E

Liang, 2014, Nanoscale, 6, 13831, 10.1039/C4NR04541F

Ma, 2011, Carbon, 49, 5292, 10.1016/j.carbon.2011.07.049

Lua, 2006, J. Anal. Appl. Pyrolysis, 76, 96, 10.1016/j.jaap.2005.08.001

Le Blond, 2011, Anal. Methods, 3, 1752, 10.1039/c1ay05144j

Zhu, 2011, Science, 332, 1537, 10.1126/science.1200770

Ai, 2013, Adv. Mater., 25, 998, 10.1002/adma.201203923

Wang, 2013, Carbon, 52, 209, 10.1016/j.carbon.2012.09.022

Xu, 2012, J. Mater. Chem., 22, 19088, 10.1039/c2jm32759g

Seredych, 2008, Carbon, 46, 1475, 10.1016/j.carbon.2008.06.027

Lee, 2011, Electrochem. Commun., 13, 50, 10.1016/j.elecom.2010.11.010

Ania, 2007, Adv. Funct. Mater., 17, 1828, 10.1002/adfm.200600961

Wu, 2013, J. Power Sources, 227, 185, 10.1016/j.jpowsour.2012.11.074

Qie, 2013, Energy Environ. Sci., 6, 2497, 10.1039/c3ee41638k

Kim, 2008, J. Power Sources, 180, 671, 10.1016/j.jpowsour.2008.01.055

Yang, 2012, Nano Lett., 12, 321, 10.1021/nl203600x

Taberna, 2003, J. Electrochem. Soc., 150, A292, 10.1149/1.1543948

Gogotsi, 2011, Science, 334, 917, 10.1126/science.1213003

Raymundo-Pinero, 2009, Adv. Funct. Mater., 19, 1032, 10.1002/adfm.200801057