A Characterization of Certain Types of Hankel Symbols on the Drury–Arveson Space

Springer Science and Business Media LLC - Tập 87 - Trang 157-167 - 2017
James Sunkes1
1Department of Mathematics, University of Tennessee, Knoxville, USA

Tóm tắt

For a class of symbols $$\varphi \in H^2_{d + 1}$$ , a characterization of those particular $$\varphi $$ which induce a bounded Hankel operator on the Drury–Arveson Space is given in terms of a Carleson measure condition on the function $$\varphi $$ .

Tài liệu tham khảo

Arcozzi, N., Rochberg, R., Sawyer, E.: Carleson measures for the Drury-Arveson Hardy space and other Besov-Sobolev spaces on complex balls. Adv. Math. 218(4), 1107–1180 (2008) Arcozzi, N., Rochberg, R., Sawyer, E., Wick, B.D.: Bilinear forms on the Dirichlet space. Anal. PDE 3(1), 21–47 (2010) Cascante, C., Fàbrega, J., Ortega, J.M.: On weighted Toeplitz, big Hankel operators and Carleson measures. Integral Equ. Oper. Theory 66(4), 495–528 (2010) Cascante, C., Ortega, J.M.: On a characterization of bilinear forms on the Dirichlet space. Proc. Am. Math. Soc. 140(7), 2429–2440 (2012) Coifman, R.R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables. Ann. Math. (2) 103(3), 611–635 (1976) Fang, Q., Xia, J.: Commutators and localization on the Drury-Arveson space. J. Funct. Anal. 260(3), 639–673 (2011) Jevtić, M.: On the Carleson measure characterization of BMOA functions on the unit ball. Proc. Am. Math. Soc. 114(2), 379–386 (1992) Richter, S., Sundberg, C.: Weak products of Dirichlet functions. J. Funct. Anal. 266(8), 5270–5299 (2014) Richter, S., Sunkes, J.: Hankel operators, invariant subspaces, and cyclic vectors in the drury-arveson space. Proc. Am. Math. Soc. 144(2016), 2575–2586 (2016) Rochberg, R., Wu, Z.J.: A new characterization of Dirichlet type spaces and applications. Ill. J. Math. 37(1), 101–122 (1993) Shalit, O.: Operator theory and function theory in Drury-Arveson space and its quotients (2014, Preprint) Zhu, K.H.: Hankel operators on the Bergman space of bounded symmetric domains. Trans. Am. Math. Soc. 324(2), 707–730 (1991) Zhu, K.: Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226. Springer-Verlag, New York (2005)