Plasmonic titanium nitride nanoparticles for in vivo photoacoustic tomography imaging and photothermal cancer therapy

Biomaterials - Tập 132 - Trang 37-47 - 2017
Wenya He1,2, Kelong Ai1, Chunhuan Jiang1, Yuanyuan Li1,2, Xiangfu Song3, Lehui Lu1
1State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
2University of Chinese, Academy of Sciences, Beijing 100039, PR China
3School of Public Health, Jilin University, Changchun 130021, PR China

Tài liệu tham khảo

Howes, 2014, Plasmonic nanomaterials for biodiagnostics, Chem. Soc. Rev., 43, 3835, 10.1039/C3CS60346F Jimenez de Aberasturi, 2015, Modern applications of plasmonic nanoparticles: from energy to health, Adv. Opt. Mater., 3, 602, 10.1002/adom.201500053 O'Neal, 2004, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles, Cancer Lett., 209, 171, 10.1016/j.canlet.2004.02.004 Choi, 2011, Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded functional nanocarriers, ACS Nano, 5, 1995, 10.1021/nn103047r Huang, 2006, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115, 10.1021/ja057254a Boltasseva1, 2015, All that glitters need not be gold, Science, 347, 1308, 10.1126/science.aaa8282 Guler, 2015, Nanoparticle plasmonics: going practical with transition metal nitrides, Mater. Today, 18, 227, 10.1016/j.mattod.2014.10.039 Naik, 2013, Alternative plasmonic materials: beyond gold and silver, Adv. Mater., 25, 3264, 10.1002/adma.201205076 De La Zerda, 2008, Carbon nanotubes as photoacoustic molecular imaging agents in living mice, Nat. Nanotechnol., 3, 557, 10.1038/nnano.2008.231 Yang, 2010, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano Lett., 10, 3318, 10.1021/nl100996u Robinson, 2011, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy, J. Am. Chem. Soc., 133, 6825, 10.1021/ja2010175 Liu, 2013, Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy, Adv. Mater., 25, 1353, 10.1002/adma.201204683 Gong, 2013, Near-infrared absorbing polymeric nanoparticles as a versatile drug carrier for cancer combination therapy, Adv. Funct. Mater., 23, 6059, 10.1002/adfm.201301555 Zha, 2013, Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells, Adv. Mater., 25, 777, 10.1002/adma.201202211 Zhou, 2010, A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy, J. Am. Chem. Soc., 132, 15351, 10.1021/ja106855m Tian, 2011, Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo, ACS Nano, 5, 9761, 10.1021/nn203293t Hessel, 2011, Copper selenide nanocrystals for photothermal therapy, Nano Lett., 11, 2560, 10.1021/nl201400z Chen, 2016, Bacterial magnetic nanoparticles for photothermal therapy of cancer under the guidance of MRI, Biomaterials, 104, 352, 10.1016/j.biomaterials.2016.07.030 Shi, 2008, Dendrimer-functionalized shell-crosslinked iron oxide nanoparticles for in-vivo magnetic resonance imaging of tumors, Adv. Mater., 20, 1671, 10.1002/adma.200702770 Cheng, 2014, PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy, Adv. Mater., 26, 1886, 10.1002/adma.201304497 Chou, 2013, Chemically exfoliated MoS2 as near-infrared photothermal agents, Angew. Chem. Int. Ed., 52, 4160, 10.1002/anie.201209229 Chou, 2013, Chemically exfoliated MoS2 as near-infrared photothermal agents, Angew. Chem., 125, 4254, 10.1002/ange.201209229 Song, 2016, Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform, Angew. Chem. Int. Ed., 55, 2122, 10.1002/anie.201510597 Song, 2016, Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform, Angew. Chem., 128, 2162, 10.1002/ange.201510597 Yin, 2016, High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy, ACS Nano, 8, 6922, 10.1021/nn501647j Cheng, 2015, Bottom-up synthesis of metal-ion-doped WS2 nanoflakes for cancer theranostics, ACS Nano, 9, 11090, 10.1021/acsnano.5b04606 Sun, 2015, Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents, Angew. Chem. Int. Ed., 54, 1 Sun, 2015, Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents, Angew. Chem., 127, 11688, 10.1002/ange.201506154 Shao, 2016, Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy, Nat. Commun., 7, 12967, 10.1038/ncomms12967 Wen, 2016, Ultrasmall biocompatible WO3−x nanodots for multi-modality imaging and combined therapy of cancers, Adv. Mater., 28, 5072, 10.1002/adma.201506428 Liu, 2015, Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor, ACS Nano, 9, 696, 10.1021/nn506137n Guler, 2013, Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles, Nano Lett., 13, 6078, 10.1021/nl4033457 Roper, 2007, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles, J. Phys. Chem. C, 11, 3636, 10.1021/jp064341w Giordano, 2009, Metal nitride and metal carbide nanoparticles by a soft urea pathway, Chem. Mater., 21, 5136, 10.1021/cm9018953 Saha, 1992, Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study, J. Appl. Phys., 72, 3072, 10.1063/1.351465 Glaser, 2007, Oxidation of vanadium nitride and titanium nitride coatings, Sur. Sci., 601, 1153, 10.1016/j.susc.2006.12.010 Sempere, 2011, Thermal behavior of oxidation of TiN and TiC nanoparticles, J. Therm. Anal. Calorim., 105, 719, 10.1007/s10973-010-1214-x Zhao, 2015, Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo, Sci. Bull., 60, 3, 10.1007/s11434-014-0700-0 Liu, 2011, Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging, Adv. Funct. Mater., 21, 1498, 10.1002/adfm.201001658 Xiao, 2011, The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials, 32, 3435, 10.1016/j.biomaterials.2011.01.021 Chen, 2015, Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance, Biomaterials, 60, 111, 10.1016/j.biomaterials.2015.05.003 Wang, 2009, Multiscale photoacoustic microscopy and computed tomography, Nat. Phot., 3, 503, 10.1038/nphoton.2009.157 Kim, 2010, In vivo photoacoustic tomography of chemicals: high-resolution functional and molecular optical imaging at new depths, Chem. Rev., 110, 2756, 10.1021/cr900266s Chen, 2014, Core–shell Pd@Au nanoplates as theranostic agents for in-vivo photoacoustic imaging, CT imaging, and photothermal therapy, Adv. Mater., 26, 8210, 10.1002/adma.201404013 Wang, 2015, Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor, Biomaterials, 39, 206, 10.1016/j.biomaterials.2014.11.009 Taruttis, 2010, Real-time imaging of cardiovascular dynamics and circulating gold nanorods with multispectral optoacoustic tomography, Opt. Express, 18, 19592, 10.1364/OE.18.019592 Desmettre, 2000, Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography, Surv. Ophthalmol., 45, 15, 10.1016/S0039-6257(00)00123-5 A. Taruttis, S. Morscher, N. C. Burton, D. Razansky, V. Ntziachristos, Fast multispectral optoacoustic tomography (MSOT) for dynamic imaging of pharmacokinetics and biodistribution in multiple organs. PLoS One 7, e30491. Habash, 2006, Thermal therapy, Part 1: an introduction to thermal therapy, Crit. Rev. Biomed. Eng., 34, 459, 10.1615/CritRevBiomedEng.v34.i6.20 Ai, 2011, Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging, Adv. Mater., 23, 4886, 10.1002/adma.201103289 Ge, 2011, Binding of blood proteins to carbon nanotubes reduces cytotoxicity, Proc. Natl. Acad. Sci. U. S. A., 108, 16968, 10.1073/pnas.1105270108 Monopoli, 2012, Biomolecular coronas provide the biological identity of nanosized materials, Nat. Nanotechnol., 7, 779, 10.1038/nnano.2012.207