Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites

Remote Sensing of Environment - Tập 204 - Trang 648-658 - 2018
Shahriar S. Heydari1, Giorgos Mountrakis1
1Department of Environmental Resources Engineering, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States

Tài liệu tham khảo

Anderson Andrefouet, 2003, Multi-site evaluation of IKONOS data for classification of tropical coral reef environments, Remote Sens. Environ., 88, 128, 10.1016/j.rse.2003.04.005 Bachmann, 2003, Improving the performance of classifiers in high-dimensional remote sensing applications: an adaptive resampling strategy for error-prone exemplars (ARESEPE), IEEE Trans. Geosci. Remote Sens., 41, 2101, 10.1109/TGRS.2003.817207 Ballantine, 2005, Mapping North African landforms using continental scale unmixing of MODIS imagery, Remote Sens. Environ., 97, 470, 10.1016/j.rse.2005.04.023 Belgiu, 2016, Random forest in remote sensing: a review of applications and future directions, ISPRS J. Photogramm. Remote Sens., 114, 24, 10.1016/j.isprsjprs.2016.01.011 Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Calvo-Zaragoza, 2015, Improving kNN multi-label classification in Prototype Selection scenarios using class proposals, Pattern Recogn., 48, 1608, 10.1016/j.patcog.2014.11.015 Chen, 2014, Deep learning-based classification of hyperspectral data, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 7, 2094, 10.1109/JSTARS.2014.2329330 Chirici, 2016, A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data, Remote Sens. Environ., 176, 282, 10.1016/j.rse.2016.02.001 Cihlar, 1998, Classification by progressive generalization: a new automated methodology for remote sensing multichannel data, Int. J. Remote Sens., 19, 2685, 10.1080/014311698214451 Collin, 2012, Enhancing coral health detection using spectral diversity indices from worldview-2 imagery and machine learners, Remote Sens., 4, 3244, 10.3390/rs4103244 Crawford, 2013, Active learning: any value for classification of remotely sensed data?, Proc. IEEE, 101, 593, 10.1109/JPROC.2012.2231951 Dixon, 2008, Multispectral landuse classification using neural networks and support vector machines: one or the other, or both?, Int. J. Remote Sens., 29, 1185, 10.1080/01431160701294661 Domingos, 1997, On the optimality of the simple bayesian classifier under zero-one loss, Mach. Learn., 29, 103, 10.1023/A:1007413511361 Foody, 2002, Status of land cover classification accuracy assessment, Remote Sens. Environ., 80, 185, 10.1016/S0034-4257(01)00295-4 Foody, 2009, Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority, Remote Sens. Environ., 113, 1658, 10.1016/j.rse.2009.03.014 Foody, 2010, Assessing the accuracy of land cover change with imperfect ground reference data, Remote Sens. Environ., 114, 2271, 10.1016/j.rse.2010.05.003 Foody, 2004, A relative evaluation of multiclass image classification by support vector machines, IEEE Trans. Geosci. Remote Sens., 42, 1335, 10.1109/TGRS.2004.827257 Gong, 2013, Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data, Int. J. Remote Sens., 34, 2607, 10.1080/01431161.2012.748992 Grekousis, 2015, An overview of 21 global and 43 regional land-cover mapping products, Int. J. Remote Sens., 36, 5309, 10.1080/01431161.2015.1093195 He, 2009, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng., 21, 1263, 10.1109/TKDE.2008.239 He, 2013 He, 2015, A comparison of classification algorithms using Landsat-7 and Landsat-8 data for mapping lithology in Canada's Arctic, Int. J. Remote Sens., 36, 2252, 10.1080/01431161.2015.1035410 Mathworks Inc, 2016 Jeni, 2013, 245 Jin, 2014, Assessing the impact of training sample selection on accuracy of an urban classification: a case study in Denver, Colorado, Int. J. Remote Sens., 35, 2067, 10.1080/01431161.2014.885152 Khatami, 2016, A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: general guidelines for practitioners and future research, Remote Sens. Environ., 177, 89, 10.1016/j.rse.2016.02.028 Khatami, 2017, Mapping per-pixel predicted accuracy of classified remote sensing images, Remote Sens. Environ., 191, 156, 10.1016/j.rse.2017.01.025 Lausch, 2015, Understanding and quantifying landscape structure – a review on relevant process characteristics, data models and landscape metrics, Ecol. Model., 295, 31, 10.1016/j.ecolmodel.2014.08.018 Lawrence, 2015, The AmericaView classification methods accuracy comparison project: a rigorous approach for model selection, Remote Sens. Environ., 170, 115, 10.1016/j.rse.2015.09.008 Li, 2014, A new accuracy assessment method for one-class remote sensing classification, IEEE Trans. Geosci. Remote Sens., 52, 4621, 10.1109/TGRS.2013.2283082 Li, 2012, A spatial-contextual support vector machine for remotely sensed image classification, IEEE Trans. Geosci. Remote Sens., 50, 784, 10.1109/TGRS.2011.2162246 Li, 2014, Comparison of classification algorithms and training sample sizes in urban land classification with landsat thematic mapper imagery, Remote Sens., 6, 964, 10.3390/rs6020964 Li, 2014, Aggregative model-based classifier ensemble for improving land-use/cover classification of Landsat TM Images, Int. J. Remote Sens., 35, 1481, 10.1080/01431161.2013.878061 Li, 2016, Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping, Int. J. Remote Sens., 37, 5632, 10.1080/01431161.2016.1246775 Liu, 2016, Land-cover classification of the Yellow River Delta wetland based on multiple end-member spectral mixture analysis and a Random Forest classifier, Int. J. Remote Sens., 37, 1845, 10.1080/01431161.2016.1165888 Liu, 2016, Method for land cover classification accuracy assessment considering edges, Sci. China Earth Sci., 59, 2318, 10.1007/s11430-016-5333-5 Lu, 2007, A survey of image classification methods and techniques for improving classification performance, Int. J. Remote Sens., 28, 823, 10.1080/01431160600746456 Mallinis, 2012, Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data, Int. J. Remote Sens., 33, 4408, 10.1080/01431161.2011.648284 Marcos Martinez, 2015, Controlling for misclassified land use data: a post-classification latent multinomial logit approach, Remote Sens. Environ., 170, 203, 10.1016/j.rse.2015.09.025 Mas, 2008, The application of artificial neural networks to the analysis of remotely sensed data, Int. J. Remote Sens., 29, 617, 10.1080/01431160701352154 McGarigal, 2015 Meddens, 2016, Detecting unburned areas within wildfire perimeters using Landsat and ancillary data across the northwestern United States, Remote Sens. Environ., 186, 275, 10.1016/j.rse.2016.08.023 Mountrakis, 2011, Support vector machines in remote sensing: a review, ISPRS J. Photogramm. Remote Sens., 66, 247, 10.1016/j.isprsjprs.2010.11.001 Ouyang, 2006, Classification of multi-spectral remote sensing data using a local transfer function classifier, Int. J. Remote Sens., 27, 5401, 10.1080/01431160600823222 Pal, 2003, An assessment of the effectiveness of decision tree methods for land cover classification, Remote Sens. Environ., 86, 554, 10.1016/S0034-4257(03)00132-9 Pelletier, 2016, Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas, Remote Sens. Environ., 187, 156, 10.1016/j.rse.2016.10.010 Pontius, 2011, Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment, Int. J. Remote Sens., 32, 4407, 10.1080/01431161.2011.552923 Puertas, 2013, Balancing misclassification errors of land cover classification maps using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975–2010), Remote Sens. Environ., 137, 112, 10.1016/j.rse.2013.06.003 Qing, 2010, Supervised land cover classification based on the locally reduced convex hull approach, Int. J. Remote Sens., 31, 2179, 10.1080/01431161003636708 Roelfsema, 2010, Integrating field data with high spatial resolution multispectral satellite imagery for calibration and validation of coral reef benthic community maps, J. Appl. Remote. Sens., 4, 043527-28, 10.1117/1.3430107 Tuia, 2011, A survey of active learning algorithms for supervised remote sensing image classification, IEEE J. Sel. Top. Signal Process., 5, 606, 10.1109/JSTSP.2011.2139193 Turner, 2005, Landscape ecology: what is the state of the science?, Annu. Rev. Ecol. Evol. Syst., 36, 319, 10.1146/annurev.ecolsys.36.102003.152614 Weng, 2012, Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends, Remote Sens. Environ., 117, 34, 10.1016/j.rse.2011.02.030 Wuttke Zhang, 2016, Deep learning for remote sensing data: a technical tutorial on the state of the art, IEEE Geosc. Remote Sens. Mag, 4, 22, 10.1109/MGRS.2016.2540798 Zhong, 2007, A supervised artificial immune classifier for remote-sensing imagery, IEEE Trans. Geosci. Remote Sens., 45, 3957, 10.1109/TGRS.2007.907739 Zhu, 2016, Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative, ISPRS J. Photogramm. Remote Sens., 122, 206, 10.1016/j.isprsjprs.2016.11.004