Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica
Tài liệu tham khảo
IPCC, Global Warming of 1.5 °C. 2018.
Beuttler, 2019, The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions, Frontiers in Climate, 1, 10.3389/fclim.2019.00010
IEA, Special,, 2020, Report on Carbon Capture Utilisation and Storage.
Zhu, 2020, Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides, J. Mater. Chem. A, 8, 16421, 10.1039/D0TA05079B
Shi, 2020, Sorbents for the direct capture of CO2 from ambient air, Angew Chem Int Ed Engl, 59, 6984, 10.1002/anie.201906756
Yang, 2019, Recent advances in CO2 adsorption from air: a review, Current Pollution Reports, 5, 272, 10.1007/s40726-019-00128-1
Sanz-Pérez, 2016, Direct capture of CO2 from ambient air, Chem Rev, 116, 11840, 10.1021/acs.chemrev.6b00173
Didas, 2015, Amine-oxide hybrid materials for CO2 capture from ambient air, Acc Chem Res, 48, 2680, 10.1021/acs.accounts.5b00284
Jahandar Lashaki, 2019, Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle, Chem Soc Rev, 48, 3320, 10.1039/C8CS00877A
Xu, 2003, Preparation and characterization of novel CO2 “molecular basket” adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous Mesoporous Mater., 62, 29, 10.1016/S1387-1811(03)00388-3
Xiaoliang Ma, X.W., and Chunshan Song*, “Molecular Basket” Sorbents for Separation of CO2 and H2S from Various Gas Streams. J. Am. Chem. Soc., 2009. 131(2009): p. 5777-5783.
Shen, 2017, Polyethylenimine applications in carbon dioxide capture and separation: From theoretical study to experimental work, Energy Technology, 5, 822, 10.1002/ente.201600694
Xu, 2002, Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 Type as high-capacity adsorbent for CO2 capture, Energy Fuels, 16, 1463, 10.1021/ef020058u
Xiaochun Xu, C.S., * Bruce G. Miller, and Alan W. Scaroni, Influence of Moisture on CO2 Separation from Gas Mixture by a Nanoporous Adsorbent Based on Polyethylenimine-Modified Molecular Sieve MCM-41. Ind. Eng. Chem. Res., 2005. 44(2005): p. 8113-8119.
Xu, 2005, Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous “molecular basket” adsorbent, Fuel Process. Technol., 86, 1457, 10.1016/j.fuproc.2005.01.002
Wang, 2012, A solid molecular basket sorbent for CO2 capture from gas streams with low CO2 concentration under ambient conditions, Phys Chem Chem Phys, 14, 1485, 10.1039/C1CP23366A
Wang, 2013, Molecular basket sorbents polyethylenimine–SBA-15 for CO2 capture from flue gas: Characterization and sorption properties, Microporous Mesoporous Mater., 169, 103, 10.1016/j.micromeso.2012.09.023
Wang, 2012, Temperature-programmed desorption of CO2 from polyethylenimine-loaded SBA-15 as molecular basket sorbents, Catal. Today, 194, 44, 10.1016/j.cattod.2012.08.008
Zhang, 2017, CO2 capture over molecular basket sorbents: effects of SiO2 supports and PEG additive, J. Energy Chem, 26, 1030, 10.1016/j.jechem.2017.09.002
Wang, 2017, Comparative study of molecular basket sorbents consisting of polyallylamine and polyethylenimine functionalized SBA-15 for CO2 capture from flue gas, ChemPhysChem, 18, 3163, 10.1002/cphc.201700828
Zhang, 2019, Discovering inherent characteristics of polyethylenimine-functionalized porous materials for CO2 capture, ACS Appl Mater Interfaces, 11, 36515, 10.1021/acsami.9b08496
Pang, 2018, Oxidatively-stable linear poly(propylenimine)-containing adsorbents for CO2 capture from ultradilute streams, ChemSusChem, 11, 2628, 10.1002/cssc.201800438
Sujan, 2019, Poly(glycidyl amine)-loaded SBA-15 sorbents for CO2 capture from dilute and ultradilute gas mixtures, ACS Appl. Polym. Mater, 1, 3137, 10.1021/acsapm.9b00788
Park, 2020, Silica supported poly(propylene guanidine) as a CO2 sorbent in simulated flue gas and direct air capture, Adsorption, 26, 89, 10.1007/s10450-019-00171-w
Yue, 2006, CO2 capture by as-prepared SBA-15 with an occluded organic template, Adv. Funct. Mater, 16, 1717, 10.1002/adfm.200600427
Zhao, 2013, Carbon dioxide adsorption on amine-impregnated mesoporous SBA-15 Sorbents: Experimental and kinetics study, Ind. Eng. Chem. Res., 52, 6480, 10.1021/ie3030533
Sanz-Pérez, 2013, CO2 adsorption performance of amino-functionalized SBA-15 under post-combustion conditions, Int. J. Greenhouse Gas Control, 17, 366, 10.1016/j.ijggc.2013.05.011
Zhang, 2018, Amine-modified SBA-15(P): a promising adsorbent for CO2 capture, J. CO2 Util., 24, 22, 10.1016/j.jcou.2017.12.006
https://earthobservatory.nasa.gov/global-maps/MOD_LSTD_M.
Kuwahara, 2012, Dramatic enhancement of CO2 uptake by poly(ethyleneimine) using zirconosilicate supports, J Am Chem Soc, 134, 10757, 10.1021/ja303136e
Kwon, 2019, Aminopolymer-impregnated hierarchical silica structures: unexpected equivalent CO2 uptake under simulated air capture and flue gas capture conditions, Chem. Mater., 31, 5229, 10.1021/acs.chemmater.9b01474
Pang, 2017, Design of aminopolymer structure to enhance performance and stability of CO2 sorbents: poly(propylenimine) vs poly(ethylenimine), J Am Chem Soc, 139, 3627, 10.1021/jacs.7b00235
Sakwa-Novak, 2015, Role of additives in composite PEI/Oxide CO(2) adsorbents: enhancement in the amine efficiency of supported PEI by PEG in CO(2) capture from simulated ambient air, ACS Appl Mater Interfaces, 7, 59, 10.1021/acsami.5b07545
Holewinski, 2017, Aminopolymer mobility and support interactions in silica-PEI Composites for CO2 capture applications: a quasielastic neutron scattering study, J Phys Chem B, 121, 6721, 10.1021/acs.jpcb.7b04106
Kumar, 2020, Alkyl-aryl amine-rich molecules for CO2 removal via direct air capture, ACS Sustainable Chem. Eng., 10.1007/978-3-030-38101-1
Jiao, 2016, Improvement of adsorbent materials for CO 2 capture by amine functionalized mesoporous silica with worm-hole framework structure, Chem. Eng. J., 306, 9, 10.1016/j.cej.2016.07.041
Serna-Guerrero, 2010, Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. a semi-empirical equilibrium model, Chem. Eng. J., 161, 173, 10.1016/j.cej.2010.04.024
Wang, 2015, Development of hybrid amine-functionalized MCM-41 sorbents for CO2 capture, Chem. Eng. J., 260, 573, 10.1016/j.cej.2014.08.107
Zhao, 2019, Polyethylenimine-based solid sorbents for CO2 adsorption: performance and secondary porosity, Ind. Eng. Chem. Res., 58, 15506, 10.1021/acs.iecr.9b02659
Serna-Guerrero, 2010, Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curves, Chem. Eng. J., 161, 182, 10.1016/j.cej.2010.04.042
Heydari-Gorji, 2011, CO2 capture on polyethylenimine-impregnated hydrophobic mesoporous silica: experimental and kinetic modeling, Chem. Eng. J., 173, 72, 10.1016/j.cej.2011.07.038
Liu, 2014, Kinetics studies of CO2 adsorption/desorption on amine-functionalized multiwalled carbon nanotubes, Ind. Eng. Chem. Res., 53, 11677, 10.1021/ie502009n
Sujan, 2019, Direct CO2 capture from air using poly(ethylenimine)-loaded polymer/silica fiber sorbents, ACS Sustainable Chem. Eng., 7, 5264, 10.1021/acssuschemeng.8b06203
