Salvage of infected cardiac implantable electronic device with taurolidine—a case report

CARDIOTHORACIC SURGEON - Tập 30 - Trang 1-4 - 2022
Stefan Borov1, Benito Baldauf2, Ernest W. Lau3, Hendrik Bonnemeier2
1Department of Electrophysiology, Krankenhaus Landshut Achdorf, Landshut, Germany
2Medical Faculty, Christian Albrechts Universität, Kiel, Germany
3Department of Cardiology, Royal Victoria Hospital, Belfast, UK

Tóm tắt

Cardiac implantable electronic devices (CIEDs) are commonly used to treat cardiac arrhythmias and prevent sudden cardiac death. Complications of CIED therapy include component malfunction, lead dislodgement, skin erosion and infection. Infection can result in significant morbidity and even mortality. The recommended treatment of CIED skin erosion and infection is urgent complete device extraction. When this is infeasible due to patient or resource factors, an attempt could be made to salvage the exposed or infected CIED system by debridement of all the infected necrotic tissues and irrigation of the pocket and contaminated hardware with anti-septic/antibiotic solutions. Taurolidine, when dissolved in an aqueous solution, produces a broad spectrum of antimicrobial actions and may be used as a novel irrigation agent during CIED salvage. This report describes the first use of a taurolidine-containing solution for pocket irrigation and in situ hardware sterilisation that resulted in the successful salvage of a CIED infected with multi-resistant Staphylococcus epidermidis. A taurolidine-containing antimicrobial solution can be a safe and effective alternative to traditional antiseptic/antibiotic solutions for pocket irrigation and in situ hardware sterilisation during CIED salvage, and may produce better clinical outcomes by some unique mechanisms of action such as inhibition of biofilm formation and neutralisation of endotoxins, with little risk of inducing and encountering resistance.

Tài liệu tham khảo

Raatikainen, M.J.P., et al., A decade of information on the use of cardiac implantable electronic devices and interventional electrophysiological procedures in the European Society of Cardiology Countries: 2017 report from the European Heart Rhythm Association. Europace, 2017. 19(suppl_2): p. ii1-ii90. Greenspon AJ et al (2011) 16-year trends in the infection burden for pacemakers and implantable cardioverter-defibrillators in the United States 1993 to 2008. J Am Coll Cardiol 58(10):1001–1006 Blomström-Lundqvist, C., et al., European Heart Rhythm Association (EHRA) international consensus document on how to prevent, diagnose, and treat cardiac implantable electronic device infections-endorsed by the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), the Latin American Heart Rhythm Society (LAHRS), International Society for Cardiovascular Infectious Diseases (ISCVID) and the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Europace, 2020. 22(4): p. 515-549. Poole JE et al (2010) Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry. Circulation 122(16):1553–1561 Dai M et al (2019) Trends of Cardiovascular Implantable Electronic Device Infection in 3 Decades: A Population-Based Study. JACC Clin Electrophysiol 5(9):1071–1080 Peacock JE Jr et al (2018) Attempted salvage of infected cardiovascular implantable electronic devices: Are there clinical factors that predict success? Pacing Clin Electrophysiol 41(5):524–531 Schaller RD, Cooper JM (2017) Salvage of focally infected implantable cardioverter-defibrillator system by in situ hardware sterilization. HeartRhythm Case Rep 3(9):431–435 Roshdy H, Seaoud E, Elbelbesy R (2021) Low-budget, single-session elimination of CIED pocket infection. Pacing Clin Electrophysiol 44(1):129–134 Gong L et al (2007) The pharmacokinetics of taurolidine metabolites in healthy volunteers. J Clin Pharmacol 47(6):697–703 Stendel R et al (2007) Pharmacokinetics of taurolidine following repeated intravenous infusions measured by HPLC-ESI-MS/MS of the derivatives taurultame and taurinamide in glioblastoma patients. Clin Pharmacokinet 46(6):513–524 William R et al (1995) Taurolidine, an antilipopolysaccharide agent, has immunoregulatory properties that are mediated by the amino acid taurine. J Leukocyte Biol 58(3):299–306 Monson JR, Ramsey PS, Donohue JH (1993) Taurolidine inhibits tumour necrosis factor (TNF) toxicity--new evidence of TNF and endotoxin synergy. Eur J Surg Oncol 19(3):226–231 Caruso, F., et al., Taurolidine antiadhesive properties on interaction with E. coli; its transformation in biological environment and interaction with bacteria cell wall. PLoS One, 2010. 5(1): p. e8927. BLENKHARN JI (1988) Sustained anti-adherence activity of taurolidine (Taurolin) and noxythiolin (Noxyflex S) solutions. J Pharmacy Pharmacol 40(7):509–511 GORMAN SP et al (1987) Electron and light microscopic observations of bacterial cell surface effects due to taurolidine treatment. Letters Appl Microbiology 4(5):103–109 Ashkani-Esfahani S et al (2014) Taurine improves the wound healing process in cutaneous leishmaniasis in mice model, based on stereological parameters. Adv Biomed Res 3:204 Dinçer S et al (1996) Effect of taurine on wound healing. Amino Acids 10(1):59–71 Değim Z et al (2002) An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids 22(2):187–198 Brückner, W.L., Taurolin: e. neues Konzept zur antimikrobiellen Chemotherapie chirurg. Infektionen ; dieser Bd. enth. d. anlässl. d. Internat. Taurolin-Symposiums am 22. Oktober 1983 in München gehaltenen Vorträge in überarb. u. erw. Form. 1985: Urban & Schwarzenberg. Kusumoto FM et al (2017) 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 14(12):e503–e551 Mason PK et al (2011) Sonication of explanted cardiac rhythm management devices for the diagnosis of pocket infections and asymptomatic bacterial colonization. Pacing Clin Electrophysiol 34(2):143–149 Weichsel J et al (2022) Eradication of Ventricular Assist Device Driveline Infection in Paediatric Patients with Taurolidine. J Cardiovasc Dev Dis 9(1):18