Exosomes: from carcinogenesis and metastasis to diagnosis and treatment of gastric cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sitarz R, Skierucha M, Mielko J et al (2018) Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 10:239–248. https://doi.org/10.2147/CMAR.S149619
Jeddi F, Soozangar N, Sadeghi MR et al (2018) Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed Pharmacother 97:286–292. https://doi.org/10.1016/J.BIOPHA.2017.10.129
Smyth EC, Verheij M, Allum W et al (2016) Gastric cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol 27:v38–v49. https://doi.org/10.1093/annonc/mdw350
Yan Y, Fu G, Ye Y, Ming L (2017) Exosomes participate in the carcinogenesis and the malignant behavior of gastric cancer. Scand J Gastroenterol 52:499–504. https://doi.org/10.1080/00365521.2016.1278458
Orditura M, Galizia G, Sforza V et al (2014) Treatment of gastric cancer. World J Gastroenterol 20:1635–1649. https://doi.org/10.3748/wjg.v20.i7.1635
Shimizu D, Kanda M, Kodera Y (2018) Emerging evidence of the molecular landscape specific for hematogenous metastasis from gastric cancer. World J Gastrointest Oncol 10:124–136. https://doi.org/10.4251/wjgo.v10.i6.124
Maia J, Caja S, Strano Moraes MC et al (2018) Exosome-based cell-cell communication in the tumor microenvironment. Front cell Dev Biol 6:18. https://doi.org/10.3389/fcell.2018.00018
Harding CV, Heuser JE, Stahl PD (2013) Exosomes: looking back three decades and into the future. J Cell Biol 200:367–371. https://doi.org/10.1083/jcb.201212113
Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820:940–948. https://doi.org/10.1016/j.bbagen.2012.03.017
Rajagopal C, Harikumar KB (2018) The origin and functions of exosomes in cancer. Front Oncol 8:66. https://doi.org/10.3389/fonc.2018.00066
Skotland T, Sandvig K, Llorente A (2017) Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res 66:30–41. https://doi.org/10.1016/J.PLIPRES.2017.03.001
Kowal J, Arras G, Colombo M et al (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113:E968–E977. https://doi.org/10.1073/pnas.1521230113
Ruivo CF, Adem B, Silva M, Melo SA (2017) The biology of cancer exosomes: insights and new perspectives. Cancer Res 77:6480–6488. https://doi.org/10.1158/0008-5472.CAN-17-0994
Hessvik NP, Llorente A (2017) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. https://doi.org/10.1007/s00018-017-2595-9
Yuyama K, Sun H, Mitsutake S, Igarashi Y (2012) Sphingolipid-modulated Exosome secretion promotes clearance of amyloid-β by microglia. J Biol Chem 287:10977–10989. https://doi.org/10.1074/jbc.M111.324616
Villarroya-Beltri C, Baixauli F, Mittelbrunn M et al (2016) ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun 7:13588. https://doi.org/10.1038/ncomms13588
McKelvey KJ, Powell KL, Ashton AW et al (2015) Exosomes: mechanisms of uptake. J Circ biomarkers 4:7. https://doi.org/10.5772/61186
Zhang H-G, Grizzle WE (2014) Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 184:28–41. https://doi.org/10.1016/j.ajpath.2013.09.027
Li X, Wang Y, Wang Q et al (2018) Exosomes in cancer: small transporters with big functions. Cancer Lett 435:55–65. https://doi.org/10.1016/j.canlet.2018.07.037
Ludwig A-K, Giebel B (2012) Exosomes: small vesicles participating in intercellular communication. Int J Biochem Cell Biol 44:11–15. https://doi.org/10.1016/j.biocel.2011.10.005
De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol 6:203. https://doi.org/10.3389/fimmu.2015.00203
Rana S, Malinowska K, Zöller M (2013) Exosomal tumor microRNA modulates premetastatic organ cells. Neoplasia 15:281–295
Eyvazi S, Hejazi MS, Kahroba H et al (2018) Cdk9 as an appealing target for therapeutic interventions. Curr Drug Targets. https://doi.org/10.2174/1389450119666181026152221
Seo N, Shirakura Y, Tahara Y et al (2018) Activated CD8 + T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nat Commun 9:435. https://doi.org/10.1038/s41467-018-02865-1
Brinton L, Sloane H, Kester M, Kelly K (2015) Formation and role of exosomes in cancer. Cell Mol Life 72:659–671
Imamura T, Komatsu S, Ichikawa D et al (2017) Low plasma levels of miR-101 are associated with tumor progression in gastric cancer. Oncotarget 8:106538–106550. https://doi.org/10.18632/oncotarget.20860
Wang M, Zhao C, Shi H et al (2014) Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer 110:1199
Li W, Gao Y-Q (2018) MiR-217 is involved in the carcinogenesis of gastric cancer by down-regulating CDH1 expression. Kaohsiung J Med Sci 34:377–384. https://doi.org/10.1016/J.KJMS.2018.02.003
Ohshima K, Inoue K, Fujiwara A et al (2010) Let-7 MicroRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5:e13247. https://doi.org/10.1371/journal.pone.0013247
Ke X, Yan R, Sun Z et al (2017) Esophageal adenocarcinoma-derived extracellular vesicle microRNAs induce a neoplastic phenotype in gastric organoids. Neoplasia 19:941–949. https://doi.org/10.1016/j.neo.2017.06.007
Qu J-L, Qu X-J, Zhao M-F et al (2009) Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig Liver Dis 41:875–880. https://doi.org/10.1016/j.dld.2009.04.006
Li C, Liu D, Li G et al (2015) CD97 promotes gastric cancer cell proliferation and invasion through exosome-mediated MAPK signaling pathway. World J Gastroentrol 21:6215
Qi J, Zhou Y, Jiao Z et al (2017) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem 42:2242–2254. https://doi.org/10.1159/000479998
Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147:275–292. https://doi.org/10.1016/j.cell.2011.09.024
Sawayama H, Ishimoto T, Baba H (2018) Microenvironment in the pathogenesis of gastric cancer metastasis. J Cancer Metastasis Treat 4:10. https://doi.org/10.20517/2394-4722.2017.79
Arita T, Ichikawa D, Konishi H et al (2016) Tumor exosome-mediated promotion of adhesion to mesothelial cells in gastric cancer cells. Oncotarget 7:56855–56863. https://doi.org/10.18632/oncotarget.10869
Chen K-B, Chen J, Jin X-L et al (2018) Exosome-mediated peritoneal dissemination in gastric cancer and its clinical applications. Biomed Rep 8:503–509. https://doi.org/10.3892/br.2018.1088
Tokuhisa M, Ichikawa Y, Kosaka N et al (2015) Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One 10:e0130472. https://doi.org/10.1371/journal.pone.0130472
Zhang X, Shi H, Yuan X et al (2018) Tumor-derived exosomes induce N2 polarization of neutrophils to promote gastric cancer cell migration. Mol Cancer 17:146. https://doi.org/10.1186/s12943-018-0898-6
Yang H, Zhang H, Ge S et al (2018) Exosome-derived miR-130a activates angiogenesis in gastric cancer by targeting C-MYB in vascular endothelial cells. Mol Ther 26:2466–2475. https://doi.org/10.1016/j.ymthe.2018.07.023
Fallah A, Sadeghinia A, Kahroba H et al (2019) Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 110:775–785. https://doi.org/10.1016/j.biopha.2018.12.022
Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206. https://doi.org/10.1101/gad.225334.113
Diepenbruck M, Christofori G (2016) Epithelial–mesenchymal transition (EMT) and metastasis: yes, no, maybe? Curr Opin Cell Biol 43:7–13. https://doi.org/10.1016/j.ceb.2016.06.002
Yang H, Fu H, Wang B et al (2018) Exosomal miR-423-5p targets SUFU to promote cancer growth and metastasis and serves as a novel marker for gastric cancer. Mol Carcinog. https://doi.org/10.1002/mc.22838
Steinbichler TB, Dudás J, Riechelmann H, Skvortsova I-I (2017) The role of exosomes in cancer metastasis. Semin Cancer Biol 44:170–181. https://doi.org/10.1016/j.semcancer.2017.02.006
Gu H, Ji R, Zhang X, Wang M (2016) Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway. Mol Med Rep 14:3452–3458
Tao L, Huang G, Song H et al (2017) Cancer associated fibroblasts: an essential role in the tumor microenvironment. Oncol Lett 14:2611–2620. https://doi.org/10.3892/ol.2017.6497
Wang J, Guan X, Zhang Y et al (2018) Exosomal miR-27a derived from gastric cancer cells regulates the transformation of fibroblasts into cancer-associated fibroblasts. Cell Physiol Biochem 49:I. https://doi.org/10.1159/000493218
Gu J, Qian H, Shen L et al (2012) Gastric cancer exosomes trigger differentiation of umbilical cord derived mesenchymal stem cells to carcinoma-associated fibroblasts through TGF-β/Smad pathway. PLoS One 7:e52465. https://doi.org/10.1371/journal.pone.0052465
Ning X, Zhang H, Wang C, Song X (2018) Exosomes released by gastric cancer cells induce transition of pericytes into cancer-associated fibroblasts. Med Sci Monit 24:2350–2359
Ma M, Chen S, Liu Z et al (2017) miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer. Onco Targets Ther 10:4161–4171. https://doi.org/10.2147/OTT.S143315
Zhu W, Huang L, Li Y et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315:28–37
Zheng X, Turkowski K, Mora J et al (2017) Redirecting tumor-associated macrophages to become tumoricidal effectors as a novel strategy for cancer therapy. Oncotarget 8:4843–48452. https://doi.org/10.18632/oncotarget.17061
Wu L, Zhang X, Zhang B et al (2016) Exosomes derived from gastric cancer cells activate NF-κB pathway in macrophages to promote cancer progression. Tumor Biol 37:12169–12180
Wang F, Li B, Wei Y et al (2018) Tumor-derived exosomes induce PD1 + macrophage population in human gastric cancer that promotes disease progression. Oncogenesis 7:41. https://doi.org/10.1038/s41389-018-0049-3
Zheng P, Luo Q, Wang W et al (2018) Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E. Cell Death Dis 94(9):434. https://doi.org/10.1038/s41419-018-0465-5
Yamamoto H (2014) Detection of DNA methylation of gastric juice-derived exosomes in gastric cancer. Integr Mol Med 1:17–21. https://doi.org/10.15761/IMM.1000105
Yamamoto H, Watanabe Y, Oikawa R et al (2016) BARHL2 methylation using gastric wash DNA or gastric juice exosomal DNA is a useful marker for early detection of gastric cancer in an H. pylori-independent manner. Clin Transl Gastroenterol 7:e184. https://doi.org/10.1038/ctg.2016.40
Chen Y, Xie Y, Xu L et al (2017) Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int J Cancer 140:900–913. https://doi.org/10.1002/ijc.30496
Miki Y, Yashiro M, Okuno T et al (2018) CD9-positive exosomes from cancer-associated fibroblasts stimulate the migration ability of scirrhous-type gastric cancer cells. Br J Cancer 118:867–877. https://doi.org/10.1038/bjc.2017.487
Yoon JH, Ham I-H, Kim O et al (2018) Gastrokine 1 protein is a potential theragnostic target for gastric cancer. Gastric Cancer. https://doi.org/10.1007/s10120-018-0828-8
Fu H, Yang H, Zhang X et al (2018) Exosomal TRIM3 is a novel marker and therapy target for gastric cancer. J Exp Clin Cancer Res 37:162. https://doi.org/10.1186/s13046-018-0825-0
Yen E-Y, Miaw S-C, Yu J-S, Lai I-R (2017) Exosomal TGF-β1 is correlated with lymphatic metastasis of gastric cancers. Am J Cancer Res 7:2199–2208
Anami K, Oue N, Noguchi T et al (2016) TSPAN8, identified by Escherichia coli ampicillin secretion trap, is associated with cell growth and invasion in gastric cancer. Gastric Cancer 19:370–380. https://doi.org/10.1007/s10120-015-0478-z
Zhang H, Deng T, Liu R et al (2017) Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun 8:15016. https://doi.org/10.1038/ncomms15016
Chen K-B, Chen J, Jin X-L et al (2018) Exosome-mediated peritoneal dissemination in gastric cancer and its clinical applications. Biomed reports 8:503–509. https://doi.org/10.3892/br.2018.1088
Wang J-P, Tang Y-Y, Fan C-M et al (2018) The role of exosomal non-coding RNAs in cancer metastasis. Oncotarget 9:12487–12502. https://doi.org/10.18632/oncotarget.23552
Majidinia M, Yousefi B (2016) Long non-coding RNAs in cancer drug resistance development. DNA Repair (Amst) 45:25–33. https://doi.org/10.1016/J.DNAREP.2016.06.003
Zhao R, Zhang Y, Zhang X et al (2018) Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer 17:68. https://doi.org/10.1186/s12943-018-0817-x
Liu X, Sun M, Nie F et al (2014) Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 13:92. https://doi.org/10.1186/1476-4598-13-92
Li Q, Shao Y, Zhang X et al (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol 36:2007–2012
Pan L, Liang W, Fu M et al (2017) Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol 143:991–1004. https://doi.org/10.1007/s00432-017-2361-2
Huang Y, Luo H, Li F et al (2018) LINC00152 down-regulated miR-193a-3p to enhance MCL1 expression and promote gastric cancer cells proliferation. Biosci Rep 38:BSR20171607. https://doi.org/10.1042/BSR20171607
Huang Y, Zhang J, Hou L et al (2017) LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J Exp Clin Cancer Res 36:194. https://doi.org/10.1186/s13046-017-0666-2
Dong D, Mu Z, Zhao C, Sun M (2018) ZFAS1: a novel tumor-related long non-coding RNA. Cancer Cell Int 18:125. https://doi.org/10.1186/s12935-018-0623-y
Majidinia M, Darband SG, Kaviani M et al (2018) Cross-regulation between Notch signaling pathway and miRNA machinery in cancer. DNA Repair (Amst) 66–67:30–41. https://doi.org/10.1016/J.DNAREP.2018.04.002
Zhang X, Liang W, Liu J et al (2018) Long non-coding RNA UFC1 promotes gastric cancer progression by regulating miR-498/Lin28b. J Exp Clin Cancer Res 37:134. https://doi.org/10.1186/s13046-018-0803-6
Shimoda A, Ueda K, Nishiumi S (2016) Exosomes as nanocarriers for systemic delivery of the Helicobacter pylori virulence factor CagA. Sci Rep 6:18346
Zhang W, Jiang X, Bao J et al (2018) Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol 9:90. https://doi.org/10.3389/fimmu.2018.00090
Che Y, Geng B, Xu Y et al (2018) Helicobacter pylori-induced exosomal MET educates tumour-associated macrophages to promote gastric cancer progression. J Cell Mol Med 22:5708–5719. https://doi.org/10.1111/jcmm.13847
Polakovicova I, Jerez S, Wichmann IA et al (2018) Role of microRNAs and exosomes in Helicobacter pylori and Epstein-barr virus associated gastric cancers. Front Microbiol 9:636. https://doi.org/10.3389/fmicb.2018.00636
Wang J, Wang Q, Liu H et al (2010) MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett 29:7137–7143
Jarry J, Schadendorf D, Greenwood C et al (2014) The validity of circulating microRNAs in oncology: five years of challenges and contradictions. Mol Oncol 8:819–829. https://doi.org/10.1016/j.molonc.2014.02.009
Ueda T, Volinia S, Okumura H et al (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11:136–146. https://doi.org/10.1016/S1470-2045(09)70343-2
Rosenfeld N, Aharonov R, Meiri E et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469. https://doi.org/10.1038/nbt1392
Huang Z, Zhu D, Wu L et al (2017) Six serum-based miRNAs as potential diagnostic biomarkers for gastric cancer. Cancer Epidemiol Biomarkers Prev 26:188–196. https://doi.org/10.1158/1055-9965.EPI-16-0607
Tokuhisa M, Ichikawa Y, Kosaka N, Ochiya T (2015) Exosomal miRNAs from peritoneum lavage fluid as potential prognostic biomarkers of peritoneal metastasis in gastric cancer. PLoS One 10:e130472
Kumata Y, Iinuma H, Suzuki Y et al (2018) Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol Rep 40:319–330. https://doi.org/10.3892/or.2018.6418
Lin L-Y, Yang L, Zeng Q et al (2018) Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer 17:84. https://doi.org/10.1186/s12943-018-0834-9
Berrondo C, Flax J, Kucherov V et al (2016) Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One 11:e0147236. https://doi.org/10.1371/journal.pone.0147236
Li W, Li C, Zhou T et al (2017) Role of exosomal proteins in cancer diagnosis. Mol Cancer 16:145. https://doi.org/10.1186/s12943-017-0706-8
Abak A, Abhari A, Rahimzadeh S (2018) Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. Peer J 6:e4763. https://doi.org/10.7717/peerj.4763
Rocha CRR, Silva MM, Quinet A et al (2018) DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo) 73:e478s. https://doi.org/10.6061/clinics/2018/e478s
Jeddi F, Soozangar N, Sadeghi MR et al (2017) Contradictory roles of Nrf2/Keap1 signaling pathway in cancer prevention/promotion and chemoresistance. DNA Repair (Amst) 54:13–21. https://doi.org/10.1016/J.DNAREP.2017.03.008
Ratti M, Lampis A, Hahne JC et al (2018) Microsatellite instability in gastric cancer: molecular bases, clinical perspectives, and new treatment approaches. Cell Mol Life Sci 75:4151–4162. https://doi.org/10.1007/s00018-018-2906-9
Zhou J, Tan X, Tan Y et al (2018) Mesenchymal stem cell derived exosomes in cancer progression, metastasis and drug delivery: a comprehensive review. J Cancer 9:3129–3137. https://doi.org/10.7150/jca.25376
Hu Y, Yan C, Mu L et al (2015) Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One 10:e0125625. https://doi.org/10.1371/journal.pone.0125625
Dianat-Moghadam H, Heydarifard M, Jahanban-Esfahlan R et al (2018) Cancer stem cells-emanated therapy resistance: implications for liposomal drug delivery systems. J Control Release 288:62–83. https://doi.org/10.1016/j.jconrel.2018.08.043
Zheng P, Chen L, Yuan X et al (2017) Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J Exp Clin Cancer Res 36:53. https://doi.org/10.1186/s13046-017-0528-y
Wang X, Zhang H, Bai M et al (2018) Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther 26:774–783. https://doi.org/10.1016/j.ymthe.2018.01.001
Wang J-J, Wang Z-Y, Chen R et al (2015) Macrophage-secreted Exosomes delivering miRNA-21 inhibitor can regulate BGC-823 cell proliferation. Asian Pac J Cancer Prev 16:4203–4209
Barok M, Puhka M, Vereb G et al (2018) Cancer-derived exosomes from HER2-positive cancer cells carry trastuzumab-emtansine into cancer cells leading to growth inhibition and caspase activation. BMC Cancer 18:504. https://doi.org/10.1186/s12885-018-4418-2
Zhang H, Wang Y, Bai M et al (2018) Exosomes serve as nanoparticles to suppress tumor growth and angiogenesis in gastric cancer by delivering hepatocyte growth factor siRNA. Cancer Sci 109:629–641. https://doi.org/10.1111/cas.13488