Optimization of machining parameters in turning Nimonic-75 using machine vision and acoustic emission signals by Taguchi technique

Measurement - Tập 144 - Trang 144-154 - 2019
Y.D. Chethan1,2, H.V. Ravindra3, Y.T. Krishnegowda2
1Department of Mechanical Engineering, Maharaja Institute of Technology, Mysore, India
2Recognised Research Center, Visvesvaraya Technological University, Belgaum, Karnataka 590014, India
3P.E.S. College of Engineering, Mandya, Karnataka, India

Tài liệu tham khảo

V. Kumar, C.C. Ezilarasan, A.A. Velayudham, Acoustic Emission Based Tool Wear Condition Monitoring While Turning Nimonic C-263 Alloy Using PVD Coated Carbide Insert. ASME.ASME International Mechanical Engineering Congress and Exposition, Volume2B:AdvancedManufacturin:V02BT02A074.doi:10.1115/IMECE2013-64246. Mandal, 2011, Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and Regression analysis, Measurement, 44, 2149, 10.1016/j.measurement.2011.07.022 Pawade, 2011, Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA), Int. J. Adv. Manuf. Technol., 56, 47, 10.1007/s00170-011-3183-z Li, 2016, An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis, Measurement, 79, 44, 10.1016/j.measurement.2015.10.029 Fernández-Robles, 2017, Machine-vision-based identification of broken inserts in edge profile milling heads, Robotics Comput.-Integr. Manuf., 44, 276, 10.1016/j.rcim.2016.10.004 Garcia-Ordás, 2017, A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques, Int. J. Adv. Manuf. Technol., 90, 1947, 10.1007/s00170-016-9541-0 Rajashekar, 2016, Development of a model for friction stir weld quality assessment using machine vision and acoustic emission techniques, J. Mater. Process. Technol., 229, 265, 10.1016/j.jmatprotec.2015.09.030 Jose, 2018, Online monitoring of tool wear and surface roughness by using acoustic and force sensors, Mater. Today: Proc., 5, 8299, 10.1016/j.matpr.2017.11.521 Bhuiyann, 2012, An innovative approach to monitor the chip formation effect on tool state using acoustic emission in turning, Int. J. Machine Tools Manuf., 58, 19, 10.1016/j.ijmachtools.2012.02.001 Kosaraju, 2013, Online tool condition monitoring in turning titanium (grade 5) using acoustic emission: modelling, Int. J. Adv. Manufact. Technol., 67, 1947, 10.1007/s00170-012-4621-2 Ravindra, 1997, Acoustic emission for tool condition monitoring in metal cutting, Wear, 212, 78, 10.1016/S0043-1648(97)00137-3 Kurada, 1997, A review of machine vision sensors for tool condition monitoring, Comput. Ind., 34, 55, 10.1016/S0166-3615(96)00075-9 Dutta, 2013, Application of digital image processing in tool condition monitoring: a review, CIRP J. Manufact. Sci. Technol., 6, 212, 10.1016/j.cirpj.2013.02.005 Kassim, 2007, Texture analysis methods for tool condition monitoring, Image Vision Comput. Image Vision Comput., 25, 1080, 10.1016/j.imavis.2006.05.024 Yang, 1996, Crater wear measurement using computer vision and automatic focusing, J. Mater. Process. Technol., 58, 362, 10.1016/0924-0136(95)02208-2 Aslan, 2007, Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC) with Al2O3 + TiCN mixed ceramic tool, Mater. Des., 28, 1618, 10.1016/j.matdes.2006.02.006 Chethan, 2014, parametric optimization in drilling EN-8 tool steel and drill wear monitoring using machine vision applied with Taguchi method, Proc. Mater. Sci., 5, 1442, 10.1016/j.mspro.2014.07.463