Optimization of machining parameters in turning Nimonic-75 using machine vision and acoustic emission signals by Taguchi technique
Tài liệu tham khảo
V. Kumar, C.C. Ezilarasan, A.A. Velayudham, Acoustic Emission Based Tool Wear Condition Monitoring While Turning Nimonic C-263 Alloy Using PVD Coated Carbide Insert. ASME.ASME International Mechanical Engineering Congress and Exposition, Volume2B:AdvancedManufacturin:V02BT02A074.doi:10.1115/IMECE2013-64246.
Mandal, 2011, Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and Regression analysis, Measurement, 44, 2149, 10.1016/j.measurement.2011.07.022
Pawade, 2011, Multi-objective optimization of surface roughness and cutting forces in high-speed turning of Inconel 718 using Taguchi grey relational analysis (TGRA), Int. J. Adv. Manuf. Technol., 56, 47, 10.1007/s00170-011-3183-z
Li, 2016, An in-depth study of tool wear monitoring technique based on image segmentation and texture analysis, Measurement, 79, 44, 10.1016/j.measurement.2015.10.029
Fernández-Robles, 2017, Machine-vision-based identification of broken inserts in edge profile milling heads, Robotics Comput.-Integr. Manuf., 44, 276, 10.1016/j.rcim.2016.10.004
Garcia-Ordás, 2017, A computer vision approach to analyze and classify tool wear level in milling processes using shape descriptors and machine learning techniques, Int. J. Adv. Manuf. Technol., 90, 1947, 10.1007/s00170-016-9541-0
Rajashekar, 2016, Development of a model for friction stir weld quality assessment using machine vision and acoustic emission techniques, J. Mater. Process. Technol., 229, 265, 10.1016/j.jmatprotec.2015.09.030
Jose, 2018, Online monitoring of tool wear and surface roughness by using acoustic and force sensors, Mater. Today: Proc., 5, 8299, 10.1016/j.matpr.2017.11.521
Bhuiyann, 2012, An innovative approach to monitor the chip formation effect on tool state using acoustic emission in turning, Int. J. Machine Tools Manuf., 58, 19, 10.1016/j.ijmachtools.2012.02.001
Kosaraju, 2013, Online tool condition monitoring in turning titanium (grade 5) using acoustic emission: modelling, Int. J. Adv. Manufact. Technol., 67, 1947, 10.1007/s00170-012-4621-2
Ravindra, 1997, Acoustic emission for tool condition monitoring in metal cutting, Wear, 212, 78, 10.1016/S0043-1648(97)00137-3
Kurada, 1997, A review of machine vision sensors for tool condition monitoring, Comput. Ind., 34, 55, 10.1016/S0166-3615(96)00075-9
Dutta, 2013, Application of digital image processing in tool condition monitoring: a review, CIRP J. Manufact. Sci. Technol., 6, 212, 10.1016/j.cirpj.2013.02.005
Kassim, 2007, Texture analysis methods for tool condition monitoring, Image Vision Comput. Image Vision Comput., 25, 1080, 10.1016/j.imavis.2006.05.024
Yang, 1996, Crater wear measurement using computer vision and automatic focusing, J. Mater. Process. Technol., 58, 362, 10.1016/0924-0136(95)02208-2
Aslan, 2007, Design optimization of cutting parameters when turning hardened AISI 4140 steel (63 HRC) with Al2O3 + TiCN mixed ceramic tool, Mater. Des., 28, 1618, 10.1016/j.matdes.2006.02.006
Chethan, 2014, parametric optimization in drilling EN-8 tool steel and drill wear monitoring using machine vision applied with Taguchi method, Proc. Mater. Sci., 5, 1442, 10.1016/j.mspro.2014.07.463