Blood feeding by the Rocky Mountain spotted fever vector, Dermacentor andersoni, induces interleukin-4 expression by cognate antigen responding CD4+ T cells
Tóm tắt
Tick modulation of host defenses facilitates both blood feeding and pathogen transmission. Several tick species deviate host T cell responses toward a Th2 cytokine profile. The majority of studies of modulation of T cell cytokine expression by ticks were performed with lymphocytes from infested mice stimulated in vitro with polyclonal T cell activators. Those reports did not examine tick modulation of antigen specific responses. We report use of a transgenic T cell receptor (TCR) adoptive transfer model reactive with influenza hemagglutinin peptide (110-120) to examine CD4+ T cell intracellular cytokine responses during infestation with the metastriate tick, Dermacentor andersoni, or exposure to salivary gland extracts. Infestation with pathogen-free D. andersoni nymphs or administration of an intradermal injection of female or male tick salivary gland extract induced significant increases of IL-4 transcripts in skin and draining lymph nodes of BALB/c mice as measured by quantitative real-time RT-PCR. Furthermore, IL-10 transcripts were significantly increased in skin while IL-2 and IFN-γ transcripts were not significantly changed by tick feeding or intradermal injection of salivary gland proteins, suggesting a superimposed Th2 response. Infestation induced TCR transgenic CD4+ T cells to divide more frequently as measured by CFSE dilution, but more notably these CD4+ T cells also gained the capacity to express IL-4. Intracellular levels of IL-4 were significantly increased. A second infestation administered 14 days after a primary exposure to ticks resulted in partially reduced CFSE dilution with no change in IL-4 expression when compared to one exposure to ticks. Intradermal inoculation of salivary gland extracts from both male and female ticks also induced IL-4 expression. This is the first report of the influence of a metastriate tick on the cytokine profile of antigen specific CD4+ T cells. Blood feeding by D. andersoni pathogen-free nymphs or intradermal injection of salivary gland extracts programs influenza hemagglutinin influenza peptide specific TCR transgenic CD4+ T cells to express IL-4.
Tài liệu tham khảo
Walker DH: Tick-transmitted infectious diseases in the United States. Ann Rev Public Health. 1998, 19: 237-269. 10.1146/annurev.publhealth.19.1.237.
Jongejan F, Uilenberg G: The global importance of ticks. Parasitology. 2004, 129: S3-S14. 10.1017/S0031182004005967.
Dennis DT, Piesman JF: Overview of tick-borne infections of humans. Tick-borne Diseases of Humans. Edited by: Goodman JL, Dennis DT, Sonenshine DE. 2005, Washington, DC: American Society for Microbiology, 3-11.
Brossard M, Wikel S: Tick immunobiology. Ticks: Biology, Disease and Control. Edited by: Bowman AS, Nuttall PA. 2008, Cambridge, UK: Cambridge University Press, 186-204. full_text.
Sonenshine DE: Biology of Ticks. 1991, New York: Oxford University Press, 1: 1-447.
Ribeiro J, Alarcon-Chaidez F, Francischetti IMB, Mans B, Mather TN, Valenzuela JG, Wikel SK: An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem Mol Biol. 2006, 36: 111-129. 10.1016/j.ibmb.2005.11.005.
Alarcon-Chaidez FJ, Sun J, Wikel SK: Construction and characterization of a cDNA library from the salivary glands of Dermacentor andersoni Stiles (Acari: Ixodidae). Insect Biochem Mol Biol. 2007, 37: 48-71. 10.1016/j.ibmb.2006.10.002.
Ribeiro JMC, Francischetti IMB: Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Ann Rev Entomol. 2003, 48: 73-88. 10.1146/annurev.ento.48.060402.102812.
Scoles GA, Broce AB, Lysyk TJ, Palmer GH: Relative efficiency of biological transmission of Anaplasma marginale (Rickettsiales: Anaplasmataceae) by Dermacentor andersoni (Acari: Ixodidae) compared with mechanical transmission by Stomoxys calcitrans (Diptera: Muscidae). J Med Entomol. 2005, 42: 668-675. 10.1603/0022-2585(2005)042[0668:REOBTO]2.0.CO;2.
Mans BJ, Gothe R, Neitz AWH: Tick toxins: perspectives on paralysis and other forms of toxicoses caused by ticks. Ticks: Biology, Disease and Control. Edited by: Bowman AS, Nuttall PA. 2008, Cambridge, UK: Cambridge University Press, 108-126. full_text.
Wikel SK: Tick modulation of host immunity: An important factor in pathogen transmission. Int J Parasitol. 1999, 29: 851-859. 10.1016/S0020-7519(99)00042-9.
Wikel SK: Influence of Dermacentor andersoni infestation on lymphocyte responsiveness to mitogens. Ann Trop Med Parasitol. 1982, 76: 627-632.
Ramachandra RN, Wikel SK: Modulation of host-immune responses by ticks (Acari: Ixodidae): effect of salivary gland extracts on host macrophages and lymphocyte cytokine production. J Med Entomol. 1992, 29: 818-826.
Maxwell SS, Stoklasek TA, Dash Y, Macaluso KR, Wikel SK: Tick modulation of the in-vitro expression of adhesion molecules by skin-derived endothelial cells. Ann Trop Med Parasitol. 2005, 99: 661-672. 10.1179/136485905X51490.
Kovar L, Kopecky J, Rihova B: Salivary gland extract from Ixodes ricinus tick polarizes the cytokine profile toward Th2 and suppresses prolifearation of T lymphocytes in human PBMC culture. J Parasitol. 2001, 87: 1342-1348.
Kovar L, Kopecky J, Rihova B: Salivary gland extract of Ixodes ricinus tick modulates the host immune response towards the Th2 cytokine profile. Parasitol Res. 2002, 88: 1066-1072. 10.1007/s00436-002-0714-4.
Mejri N, Brossard M: Splenic dendritic cells pulsed with Ixodes ricinus tick saliva prime naïve CD+4T to induce Th2 cell differentiation in vitro and in vivo. Int Immunol. 2007, 19: 535-543. 10.1093/intimm/dxm019.
Doherty PC, Topham DJ, Tripp RA: Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev. 1996, 150: 23-44. 10.1111/j.1600-065X.1996.tb00694.x.
Pape KA, Kearney ER, Khoruts A, Mondino A, Merica R, Chen Z-M, Ingulli E, White J, Johnson JG, Jenkins MK: Use of adoptive transfer of T-cell-antigen-receptor-transgenic T cells for the study of T-cell activation in vivo. Immunol Rev. 1997, 156: 67-78. 10.1111/j.1600-065X.1997.tb00959.x.
Higgins AD, Mihalyo MA, McGary PW, Adler AJ: CD4 cell priming and tolerization are differentially programmed by APCs upon initial engagement. J Immunol. 2002, 168: 5573-5581.
Doody ADH, Kovalchin JT, Mihalyo MA, Hagymasi AT, Drake CG, Adler AJ: Glycoprotein 96 can chaperone both MHC class I- and class II-restricted epitopes for in vivo presentation, but selectively primes CD8+ T cell effector function. J Immunol. 2004, 172: 6087-6092.
Müller-Doblies UU, Maxwell SS, Boppana VD, Mihalyo MA, McSorley SJ, Vella AT, Adler AJ, Wikel SK: Feeding by the tick, Ixodes scapularis, causes CD4+ T cells responding to cognate antigen to develop the capacity to express IL-4. Parasite Immunol. 2007, 29: 485-499. 10.1111/j.1365-3024.2007.00966.x.
Kirberg J, Baron A, Jakob S, Rolink A, Karjalainen K, von Boehmer H: Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor. J Exp Med. 1994, 180: 25-34. 10.1084/jem.180.1.25.
Alarcon-Chaidez FJ, Boppana VD, Hagymasi AT, Adler AJ, Wikel SK: A novel sphingomyelinase-like enzyme present in tick saliva drives host CD4+ T cells to express IL-4. Parasite Immunol. 2009, 31: 210-219. 10.1111/j.1365-3024.2009.01095.x.
Boppana VD, Thangamani S, Adler AJ, Wikel SK: SAAG-4 is a novel mosquito salivary protein that programs host CD4+ T cells to express IL-4. Parasite Immunol. 2009, 31: 287-295. 10.1111/j.1365-3024.2009.01096.x.
Bouchard KR, Wikel SK: Care, maintenance, and experimental infestation of ticks in the laboratory setting. Biology of Disease Vectors. Edited by: Marquardt C, Black WC IV, Freier JE Hagedorn HH, Hemingway J, Higgs S, James AA, Kondratieff B, Moore CG, San Diego CA. 2005, Elsevier Academic Press, 705-711. Second
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klemk DC: Measurement of protein using bicinchoninic acid. Anal Biochem. 1985, 150: 76-85. 10.1016/0003-2697(85)90442-7.
Hasler P, Zouali M: Subversion of B lymphocyte signaling by infectious agents. Genes Immun. 2003, 4: 95-103. 10.1038/sj.gene.6363941.
Roy CR, Mocarski ES: Pathogen subversion of cell-intrinsic innate immunity. Nature Immunol. 2007, 11: 1179-1187. 10.1038/ni1528.
Frischknecht F: The skin as interface in the transmission of arthropod-borne pathogens. Cell Microbiol. 2007, 9: 1630-1640. 10.1111/j.1462-5822.2007.00955.x.
Francischetti IM, Sa-Nunes A, Mans BJ, Santos IM, Ribeiro JM: The role of saliva in tick feeding. Front Biosci. 2009, 14: 2051-88. 10.2741/3363.
Kaufman WR: Tick-host interaction: a synthesis of current concepts. Parasitol Today. 1989, 5: 47-56. 10.1016/0169-4758(89)90191-9.
Wikel SK, Allen JR: Acquired resistance to ticks. I. Passive transfer of resistance. Immunology. 1976, 30: 311-316.
Wikel SK, Allen JR: Acquired resistance to ticks. II. Effects of Cyclophosphamide on resistance. Immunology. 1976, 30: 479-484.
Wikel SK, Allen JR: Acquired resistance to ticks. III.Cobra venom factor and the resistance response. Immunology. 1977, 32: 457-465.
Alarcon-Chaidez FJ, Müller-Doblies UU, Wikel SK: Characterization of a recombinant immunomodulatory protein from the salivary glands of Dermacentor andersoni. Parasite Immunol. 2003, 25: 69-77. 10.1046/j.1365-3024.2003.00609.x.
Allen JR, Khalil HM, Wikel SK: Langerhans cells trap tick salivary gland antigens in tick-resistant guinea pigs. J Immunol. 1979, 122: 563-565.
Nithiuthai S, Allen JR: Significant changes in epidermal Langerhans cells of guinea-pigs infested with ticks (Dermacentor andersoni). Immunology. 1984, 51: 133-141.
Ganapamo F, Rutti B, Brossard M: In vitro production of interleukin-4 and interferon-gamma by lymph node cells from BALB/c mice infested with nymphal Ixodes ricinus ticks. Immunology. 1995, 85: 120-124.
Schoeler GB, Manweiler SA, Wikel SK: Ixodes scapularis: Effects of repeated infestations with pathogen-free nymphs on macrophage and T lymphocyte cytokine responses of BALB/c and C3H/HeN mice. Exp Parasitol. 1999, 92: 239-248. 10.1006/expr.1999.4426.
Barker SC, Murrell A: Systematics and evolution of ticks with a list of valid genus and species names. Ticks: Biology, Disease and Control. Edited by: Bowman AS, Nuttall PA. 2008, Cambridge, UK: Cambridge University Press, 1-39. full_text.
Grogan JL, Mohrs M, Harmon B, Lacy DA, Sedat JW, Locksley RM: Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity. 2001, 14: 205-215. 10.1016/S1074-7613(01)00103-0.
Allen JR: Tick resistance: basophils in skin reactions of resistant guinea pigs. Int J Parasitol. 1973, 3: 195-200. 10.1016/0020-7519(73)90024-6.
denHollander N, Allen JR: Dermacentor variabilis: acquired resistance to ticks in BALB/c mice. Exp Parasitol. 1985, 59: 118-129. 10.1016/0014-4894(85)90064-5.
Steeves EB T, Allen JR: Tick resistance in mast cell-deficient mice: histological studies. Int J Parasitol. 1991, 21: 265-268. 10.1016/0020-7519(91)90020-8.
Ierna MX, Scales HE, Saunders KL, Lawrence CE: Mast cell production of IL-4 and TNF may be required for protective and pathological responses in gastrointestinal helminth infection. Mucosal Immunol. 2008, 1: 147-155. 10.1038/mi.2007.16.
Perrigoue JG, Saenz SA, Siracusa MC, Allenspach EJ, Taylor BC, Giacomin PR, Nair MG, Du Y, Zaph C, van Rooijen N, Comeau MR, Pearce EJ, Laufer TM, Artis D: MHC class II-dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nature Immunol. 2009, 10: 697-705. 10.1038/ni.1740.
Macaluso KR, Wikel SK: Dermacentor andersoni: effects of repeated infestations on lymphocyte proliferation, cytokine production, and adhesion-molecule expression by BALB/c mice. Ann Trop Med Parasitol. 2001, 95: 413-427. 10.1080/00034980120059081.
Bergman DK, Palmer MJ, Caimano MJ, Radolf JD, Wikel SK: Isolation and cloning of a secreted immunosuppressant protein from Dermacentor andersoni salivary gland. J Parasitol. 2000, 86: 516-525.