A review of very-high-temperature Nb-silicide-based composites
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science - Tập 34 - Trang 2043-2052 - 2003
Tóm tắt
The temperatures of airfoil surfaces in advanced turbine engines are approaching the limits of nickel-based superalloys. Innovations in refractory metal-intermetallic composites (RMICs) are being pursued, with particular emphasis on systems based on Nb-Si and Mo-Si-B alloys. These systems have the potential for service at surface temperatures >1350 °C. The present article will review the most recent progress in the development of Nb-silicide-based in-situ composites for very-high-temperature applications. Nb-silicide-based composites contain high-strength silicides that are toughened by a ductile Nb-based solid solution. Simple composites are based on binary Nb-Si alloys; more complex systems are alloyed with Ti, Hf, Cr, and Al. In higher-order silicide-based systems, alloying elements have been added to stabilize intermetallics, such as Laves phases, for additional oxidation resistance. Alloying schemes have been developed to achieve an excellent balance of room-temperature toughness, high-temperature creep performance, and oxidation resistance. Recent progress in the development of composite processing-structure-property relationships in Nb-silicide-based in-situ composites will be described, with emphasis on rupture resistance and oxidation performance. The Nb-silicide composite properties will be compared with those of advanced Ni-based superalloys.
Tài liệu tham khảo
R.W. Buckman, Jr.: Alloying, ASM, Metals Park, OH, 1988, pp. 419–45.
P.R. Subramanian, M.G. Mendiratta, D.M. Dimiduk, and M.A. Stucke: Mater. Sci. Eng., 1997, vols. A239-A240, pp. 1–13.
B.P. Bewlay, M.R. Jackson, and M.F.X. Gigliotti: in Intermetallic Compounds—Principles and Practice—Vol. 3, R.L. Fleischer and J.H. Westbrook, eds.; John Wiley, New York, NY, 2001, pp. 541–60.
D.M. Berczik: United Technologies Corporation, U.S. Patent 05693156, 1997; United Technologies Corporation, U.S. Patent 05595616, 1997, East Hartford, CT.
J.H. Schneibel, M.J. Kramer, O. Unal, and R.N. Wright: Intermetallics, 2001, vol. 9, pp. 25–31.
M.G. Mendiratta, J.J. Lewandowski, and D.M. Dimiduk: Metall. Trans. A, 1991, vol. 22A, pp. 1573–81.
M.G. Mendiratta and D.M. Dimiduk: Metall Trans. A, 1993, vol. 24A, pp. 501–04.
P.R. Subramanian, M.G. Mendiratta, and D.M. Dimiduk: J. Met., 1996, vol. 48(1), pp. 33–38.
B.P. Bewlay, M.R. Jackson, and H.A. Lipsitt: Metall. Mater. Trans. A., 1996, vol. 27A, pp. 3801–08.
B.P. Bewlay, M.R. Jackson, and P.R. Subramanian: JOM, 1999, vol. 51, pp. 32–36.
B.P. Bewlay, J.J. Lewandowski, and M.R. Jackson: JOM, 1997, vol. 49, pp. 46–48.
J.D. Rigney and J.J. Lewandowski: Metall. Trans. A, 1996, vol. 27A, pp. 3292–306.
H. Choe, D. Chen, J.H. Schneibel, and R.O. Ritchie: Intermetallics, 2001, vol. 9, pp. 319–29.
W.A. Zinsser and J.J. Lewandowski: Metall. Trans. A, 1998, vol. 29A, pp. 1749–57.
J.H. Perepezko, R. Sakidja, and S. Kim: Proc. High Temperature Ordered Intermetallic Alloys IX, 2001, vol. 646, pp. N4.5.1-N4.5.12.
S.J. Balsone, B.P. Bewlay, and M.R. Jackson, P.R. Subramanian, J.-C. Zhao, A. Chatterjee, and T.M. Hefferman: Proc. 2001 ISSI Conf., K.J. Hemker, D.M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J.M. Larsen, V.K. Sikka, M. Thomas, and J.D. Whittenberger, eds., 2001, pp. 99–108.
C.L. Ma, H. Tanaka, A. Kasama, R. Tanaka, Y. Mishima, and S. Hanada: Proc. High Temperature Ordered Intermetallic Alloys IX, 2001, vol. 646, pp. N5.39.1-N5.39.6.
P.R. Subramanian, T.A. Parthasarathy, M.G. Mendiratta, and D.M. Dimiduk: Scripta Metall., 1995, vol. 32(8), pp. 1227–32.
G.L. Erickson: JOM, 1995, vol. 47, pp. 36–39.
Ceramic Source, American Ceramic Society, 1991, vol. 7, T131, www.keram.se