Dual modulation of cell survival and cell death by β 2 -adrenergic signaling in adult mouse cardiac myocytes

Weizhong Zhu1, Minghao Zheng1, Walter J. Koch1, Robert J. Lefkowitz1, Brian K. Kobilka1, Rui‐Ping Xiao1
1Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; Department of Surgery and Department of Medicine and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710; and Howard Hughes Medical Institute, Stanford University Medical Center, Stanford, CA 94305

Tóm tắt

The goal of this study was to determine whether β 1 -adrenergic receptor (AR) and β 2 -AR differ in regulating cardiomyocyte survival and apoptosis and, if so, to explore underlying mechanisms. One potential mechanism is that cardiac β 2 -AR can activate both G s and G i proteins, whereas cardiac β 1 -AR couples only to G s . To avoid complicated crosstalk between β-AR subtypes, we expressed β 1 -AR or β 2 -AR individually in adult β 12 -AR double knockout mouse cardiac myocytes by using adenoviral gene transfer. Stimulation of β 1 -AR, but not β 2 -AR, markedly induced myocyte apoptosis, as indicated by increased terminal deoxynucleotidyltransferase-mediated UTP end labeling or Hoechst staining positive cells and DNA fragmentation. In contrast, β 2 -AR (but not β 1 -AR) stimulation elevated the activity of Akt, a powerful survival signal; this effect was fully abolished by inhibiting G i , G β γ , or phosphoinositide 3 kinase (PI3K) with pertussis toxin, βARK-ct (a peptide inhibitor of G β γ ), or LY294002, respectively. This indicates that β 2 -AR activates Akt via a G i -G β γ -PI3K pathway. More importantly, inhibition of the G i -G β γ -PI3K-Akt pathway converts β 2 -AR signaling from survival to apoptotic. Thus, stimulation of a single class of receptors, β 2 -ARs, elicits concurrent apoptotic and survival signals in cardiac myocytes. The survival effect appears to predominate and is mediated by the G i -G β γ -PI3K-Akt signaling pathway.

Từ khóa


Tài liệu tham khảo

10.1056/NEJM199610173351603

10.1056/NEJM199704173361603

10.1006/jmcc.1996.0193

10.1172/JCI118747

Z Li, O H Bing, X Long, K G Robinson, E G Lakatta Am J Physiol 272, H2313–H2319 (1997).

10.1161/01.RES.84.1.34

10.1161/01.CIR.98.13.1329

Y Shizukuda, P M Buttrick, D L Geenen, A C Borczuk, R N Kitsis, E H Sonnenblick Am J Physiol 275, H961–H968 (1998).

10.1161/01.CIR.100.22.2210

10.1161/01.CIR.102.3.344

R P Xiao, X Ji, E G Lakatta Mol Pharmacol 47, 322–329 (1995).

10.1161/01.RES.84.1.43

10.1074/jbc.274.31.22048

10.1161/01.RES.85.11.1092

10.1038/36362

10.1074/jbc.274.2.628

10.1152/ajpheart.2000.279.1.H429

10.1161/01.RES.87.12.1172

10.1074/jbc.M006325200

10.1016/S0021-9258(17)37587-7

10.1073/pnas.91.26.12706

10.1074/jbc.M910471199

10.1101/gad.11.6.701

10.1161/01.CIR.101.6.660

10.1161/01.CIR.100.23.2373

10.1126/science.275.5300.628

10.1074/jbc.273.30.19080

10.1074/jbc.275.7.4693

10.1074/jbc.271.21.12133

10.1126/science.275.5300.665

10.1016/S0092-8674(00)80405-5

10.1101/gad.13.22.2905

10.1038/43474

10.1128/MCB.19.8.5800

10.1006/bbrc.1999.1387

10.1073/pnas.96.12.7059

10.1006/jmcc.2000.1123

10.1126/science.8160017

10.1073/pnas.96.11.6400

10.1161/01.CIR.101.14.1707

10.1056/NEJM198409273111303

10.1161/01.CIR.94.9.2285

10.1073/pnas.94.22.12100

10.1172/JCI4059