A zero liquid discharge system integrating multi-effect distillation and evaporative crystallization for desalination brine treatment
Tóm tắt
Từ khóa
Tài liệu tham khảo
Unies, N., Water in a changing world. The United Nations World Water Development Report 3. World Water Assessment Programme, En ligne. http://www.unesco.org/water/wwap/wwdr/wwdr3 (page consultée le 5 juillet 2009), 2009.
Water, U., 2018 UN World Water Development Report, Nature-based Solutions for Water. 2018.
Virgili, F., T. Pankratz, and J. Gasson, IDA Desalination Yearbook 2015–2016. 2016: Media Analytics Limited.
Shahzad, M.W., M. Burhan, and K.C. Ng, Pushing desalination recovery to the maximum limit: membrane and thermal processes integration. Desalination, 2017. 416: p. 54–64.
Chen, Q., Y. Li, and K. Chua, On the thermodynamic analysis of a novel low-grade heat driven desalination system. Energy Conversion and Management, 2016. 128: p. 145–159.
Chen, Q. and K.J. Chua, A spray assisted low-temperature desalination technology, in Emerging technologies for sustainable desalination handbook. 2018, Elsevier. p. 255–284.
Giwa, A., V. Dufour, F. Al Marzooqi, M. Al Kaabi, and S. Hasan, Brine management methods: recent innovations and current status. Desalination, 2017. 407: p. 1–23.
Subramani, A. and J.G. Jacangelo, Treatment technologies for reverse osmosis concentrate volume minimization: a review. Separation and Purification Technology, 2014. 122: p. 472–489.
Petersen, K.L., A. Paytan, E. Rahav, O. Levy, J. Silverman, O. Barzel, D. Potts, and E. Bar-Zeev, Impact of brine and antiscalants on reef-building corals in the Gulf of Aqaba–Potential effects from desalination plants. Water research, 2018. 144: p. 183–191.
Missimer, T.M. and R.G. Maliva, Environmental issues in seawater reverse osmosis desalination: intakes and outfalls. Desalination, 2018. 434: p. 198–215.
Lu, K.J., Z.L. Cheng, J. Chang, L. Luo, and T.-S. Chung, Design of zero liquid discharge desalination (ZLDD) systems consisting of freeze desalination, membrane distillation, and crystallization powered by green energies. Desalination, 2019. 458: p. 66–75.
Nakoa, K., K. Rahaoui, A. Date, and A. Akbarzadeh, Sustainable zero liquid discharge desalination (SZLDD). solar Energy, 2016. 135: p. 337–347.
Guo, H., H.M. Ali, and A. Hassanzadeh, Simulation study of flat-sheet air gap membrane distillation modules coupled with an evaporative crystallizer for zero liquid discharge water desalination. Applied Thermal Engineering, 2016. 108: p. 486–501.
Guan, G., R. Wang, F. Wicaksana, X. Yang, and A.G. Fane, Analysis of membrane distillation crystallization system for high salinity brine treatment with zero discharge using Aspen flowsheet simulation. Industrial & engineering chemistry research, 2012. 51(41): p. 13405–13413.
Julian, H., S. Meng, H. Li, Y. Ye, and V. Chen, Effect of operation parameters on the mass transfer and fouling in submerged vacuum membrane distillation crystallization (VMDC) for inland brine water treatment. Journal of Membrane Science, 2016. 520: p. 679–692.
Creusen, R., J. van Medevoort, M. Roelands, A.V.R. van Duivenbode, J.H. Hanemaaijer, and R. van Leerdam, Integrated membrane distillation–crystallization: process design and cost estimations for seawater treatment and fluxes of single salt solutions. Desalination, 2013. 323: p. 8–16.
Edwie, F. and T.-S. Chung, Development of simultaneous membrane distillation–crystallization (SMDC) technology for treatment of saturated brine. Chemical Engineering Science, 2013. 98: p. 160–172.
Zhao, D., J. Xue, S. Li, H. Sun, and Q.-D. Zhang, Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater. Desalination, 2011. 273(2–3): p. 292–298.
Panagopoulos, A., Process simulation and techno-economic assessment of a zero liquid discharge/multi-effect desalination/thermal vapor compression (ZLD/MED/TVC) system. International Journal of Energy Research, 2020. 44(1): p. 473–495.
Onishi, V.C., A. Carrero-Parreno, J.A. Reyes-Labarta, E.S. Fraga, and J.A. Caballero, Desalination of shale gas produced water: a rigorous design approach for zero-liquid discharge evaporation systems. Journal of Cleaner Production, 2017. 140: p. 1399–1414.
Sharqawy, M.H., J.H. Lienhard, and S.M. Zubair, Thermophysical properties of seawater: a review of existing correlations and data. Desalination and water treatment, 2010. 16(1–3): p. 354–380.
Wagner, W. and H.-J. Kretzschmar, IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, 2008: p. 7–150.
Sparrow, B.S., Empirical equations for the thermodynamic properties of aqueous sodium chloride. Desalination, 2003. 159(2): p. 161–170.
El-Dessouky, H., I. Alatiqi, S. Bingulac, and H. Ettouney, Steady-state analysis of the multiple effect evaporation desalination process. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 1998. 21(5): p. 437–451.
Luo, L., J. Chang, and T.-S. Chung, Cooling crystallization of sodium chloride via hollow fiber devices to convert waste concentrated brines to useful products. Industrial & Engineering Chemistry Research, 2017. 56(36): p. 10183–10192.
Bui, D.T., M.K. Ja, J.M. Gordon, K.C. Ng, and K.J. Chua, A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification. Energy, 2017. 132: p. 106–115.
Amelkin, S., A. Tsirlin, J. Burzler, S. Schubert, and K.-H. Hoffmann, Minimal work for separation processes of binary mixtures. Open Systems & Information Dynamics, 2003. 10(04): p. 335–349.
Chen, Q., M.K. Ja, Y. Li, and K. Chua, Energy, economic and environmental (3E) analysis and multi-objective optimization of a spray-assisted low-temperature desalination system. Energy, 2018. 151: p. 387–401.
Palenzuela, P., A.S. Hassan, G. Zaragoza, and D.-C. Alarcón-Padilla, Steady state model for multi-effect distillation case study: plataforma Solar de Almería MED pilot plant. Desalination, 2014. 337: p. 31–42.
Chen, Q., M.K. Ja, Y. Li, and K. Chua, Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system. Energy, 2019. 166: p. 871–885.
Chen, Q., M.K. Ja, Y. Li, and K. Chua, On the second law analysis of a multi-stage spray-assisted low-temperature desalination system. Energy Conversion and Management, 2017. 148: p. 1306–1316.
Mistry, K.H., R.K. McGovern, G.P. Thiel, E.K. Summers, S.M. Zubair, and J.H. Lienhard, Entropy generation analysis of desalination technologies. Entropy, 2011. 13(10): p. 1829–1864.
Chen, Q., M. Burhan, M.W. Shahzad, D. Ybyraiymkul, F.H. Akhtar, and K.C. Ng, Simultaneous production of cooling and freshwater by an integrated indirect evaporative cooling and humidification-dehumidification desalination cycle. Energy Conversion and Management, 2020. 221: p. 113169.
Al-Hengari, S., W. ElMoudir, and M.A. El-Bousiffi, Economic assessment of thermal desalination processes. Desalination and Water Treatment, 2015. 55(9): p. 2423–2436.
Elsayed, M.L., O. Mesalhy, R.H. Mohammed, and L.C. Chow, Transient and thermo-economic analysis of MED-MVC desalination system. Energy, 2019. 167: p. 283–296.
Papapetrou, M., A. Cipollina, U. La Commare, G. Micale, G. Zaragoza, and G. Kosmadakis, Assessment of methodologies and data used to calculate desalination costs. Desalination, 2017. 419: p. 8–19.
Christ, A., B. Rahimi, K. Regenauer-Lieb, and H.T. Chua, Techno-economic analysis of geothermal desalination using hot sedimentary aquifers: a pre-feasibility study for Western Australia. Desalination, 2017. 404: p. 167–181.
Power, R.B., Steam jet ejectors for the process industries.[Glossary included]. 1994.