Methylation associated inactivation of RASSF1A and its synergistic effect with activated K-Ras in nasopharyngeal carcinoma

Tao Wang1, Hongli Liu1, Yeshan Chen1, Wei Liu1, Jing Yu2, Gang Wu1
1Cancer Center of Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
2The Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Tóm tắt

Epigenetic silencing of tumor suppressor genes associated with promoter methylation is considered to be a hallmark of oncogenesis. RASSF1A is a candidate tumor suppressor gene which was found to be inactivated in many human cancers. Although we have had a prelimilary cognition about the function of RASSF1A, the exact mechanisms about how RASSF1A functions in human cancers were largely unknown. Moreover, the effect of mutated K-Ras gene on the function of RASSF1A is lacking. The aim of this study was to investigate the expression profile and methylation status of RASSF1A gene, and to explore its concrete mechanisms as a tumor suppressor gene in Nasopharyngeal Carcinoma. We examined the expression profile and methylation status of RASSF1A in two NPC cell lines, 38 primary nasopharyngeal carcinoma and 14 normal nasopharyngeal epithelia using RT-PCR and methylated specific PCR(MSP) respectively. 5-aza-dC was then added to confirm the correlation between hypermethylation status and inactivation of RASSF1A. The NPC cell line CNE-2 was transfected with exogenous pcDNA3.1(+)/RASSF1A plasmid in the presence or absence of mutated K-Ras by liposome-mediated gene transfer method. Flow cytometry was used to examine the effect of RASSF1A on cell cycle modulation and apoptosis. Meanwhile, trypan blue dye exclusion assays was used to detect the effect of RASSF1A transfection alone and the co-transfection of RASSF1A and K-Ras on cell proliferation. Promoter methylation of RASSF1A could be detected in 71.05% (27/38) of NPC samples, but not in normal nasopharyngeal epithelia. RASSF1A expression in NPC primary tumors was lower than that in normal nasopharyngeal epithelial (p < 0.01). Expression of RASSF1A was down-regulated in two NPC cell lines. Loss of RASSF1A expression was greatly restored by the methyltransferase inhibitor 5-aza-dC in CNE-2. Ectopic expression of RASSF1A in CNE-2 could increase the percentage of G0/G1 phase cells (p < 0.01), inhibit cell proliferation and induce apoptosis (p < 0.001). Moreover, activated K-Ras could enhance the growth inhibition effect induced by RASSF1A in CNE-2 cells (p < 0.01). Expression of RASSF1A is down-regulated in NPC due to the hypermethylation of promoter. Exogenous expression of RASSF1A is able to induce growth inhibition effect and apoptosis in tumor cell lines, and this effect could be enhanced by activated K-Ras.

Tài liệu tham khảo

Huang DP, Lo KW: Aetiological factors and pathogenesis. Nasopharyngeal Carcinoma. Edited by: van Hasselt GA, Gibb AG. 1999, Hong Kong: The Chinese University Press, 31-60. 2 Feng BJ, Jalbout M, Ayoub WB, Khyatti M, Dahmoul S, Ayad M, Maachi F, Bedadra W, Abdoun M, Mesli S, Hamdi-Cherif M, Boualga K, Bouaouina N, Chouchane L, Benider A, Ben Ayed F, Goldgar D, Corbex M: Dietary risk factors for nasopharyngeal carcinoma in Maghrebian countries. Int J Cancer. 2007, 121: 1550-1555. 10.1002/ijc.22813. Dammann R, Strunnikova M, Schagdarsurengin U, Rastetter M, Papritz M, Hattenhorst UE, Hofmann HS, Silber RE, Burdach S, Hansen G: CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur J Cancer. 2005, 41 (8): 1223-1236. 10.1016/j.ejca.2005.02.020. Geli J, Kogner P, Lanner F, Natalishvili N, Juhlin C, Kiss N, Clark GJ, Ekström TJ, Farnebo F, Larsson C: Assessment of NORE1A as a putative tumor suppressor in human neuroblastoma. Int J Cancer. 2008, 123 (2): 389-394. 10.1002/ijc.23533. Cheng X: Silent assassin: oncogenic ras directs epigenetic inactivation of target genes. Sci Signal. 2008, 1: pe14-10.1126/stke.113pe14. Pfeifer GP, Dammann R: Methylation of the Tumor Suppressor Gene RASSF1A in Human Tumors. Biochemistry. 2005, 70: 576-583. Ayadi W, Karray-Hakim H, Khabir A, Feki L, Charfi S, Boudawara T, Ghorbel A, Daoud J, Frikha M, Busson P, Hammami A: Aberrant methylation of p16, DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res. 2008, 28 (4B): 2161-7. Lo PH, Xie D, Chan KC, Xu FP, Kuzmin I, Lerman MI, Law S, Chua D, Sham J, Lung ML: Reduced expression of RASSF1A in esophageal and nasopharyngeal carcinomas significantly correlates with tumor stage. Cancer Lett. 2007, 257 (2): 199-205. 10.1016/j.canlet.2007.07.018. Zhou Wen, Feng Xiangling, Li Hong, Wang Lei, Zhu Bin, Liu Weidong, Zhao Ming, Yao Kaitai, Ren Caiping: Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai). 2009, 41 (1): 54-62. 10.1093/abbs/gmn06. Liu Z, Zhao J, Chen XF, Li W, Liu R, Lei Z, Liu X, Peng X, Xu K, Chen J, Liu H, Zhou QH, Zhang HT: CpG island methylator phenotype involving tumor suppressor genes located on chromosome 3p in non-small cell lung cancer. Lung Cancer. 2008, 62 (1): 15-22. 10.1016/j.lungcan.2008.02.005. Agathanggelou A, Honorio S, Macartney DP, Martinez A, Dallol A, Rader J, et al: Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene. 2001, 20: 1509-1518. 10.1038/sj.onc.1204175. Ye M, Xia B, Guo Q, Zhou F, Zhang X: Association of diminished expression of RASSF1A with promoter methylation in primary gastric cancer from patients of central China. BMC Cancer. 2007, 7: 1-7. 10.1186/1471-2407-7-1. Steinmann K, Sandner A, Schagdarsurengin U, Dammann RH: Frequent promoter hypermethylation of tumor-related genes in head and neck squamous cell carcinoma. Oncol Rep. 2009, 22 (6): 1519-26. Thaler S, Hähnel PS, Schad A, Dammann R, Schuler M: RASSF1A mediates p21Cip1/Waf1-dependent cell cycle arrest and senescence through modulation of the Raf-MEK-ERK pathway and inhibition of Akt. Cancer Res. 2009, 69 (5): 1748-57. 10.1158/0008-5472.CAN-08-1377. Shen WJ, Dai DQ, Teng Y, Liu HB: 5-Aza-CdR regulates the expression of RASSF1A gene in human gastric cancer cell line and inhibits the growth of cells. Zhonghua Wei Chang Wai Ke Za Zhi. 2009, 12 (1): 57-60. Xue WJ, Li C, Zhou XJ, Guan HG, Qin L, Li P, Wang ZW, Qian HX: RASSF1A expression inhibits the growth of hepatocellular carcinoma from Qidong County. J Gastroenterol Hepatol. 2008, 23 (9): 1448-58. 10.1111/j.1440-1746.2007.05067.x. Vos MD, Dallol A, Eckfeld K, Allen NPC, Donninger H, Hesson L, et al: The RASSF1A Tumor Suppressor Activates Bax via MOAP-1. The Journal of biological chemistry. 2006, 281: 4557-4563. 10.1074/jbc.M512128200. Dammann R, Li C, Yoon J-H, Chin PL, Bates S, Pfeifer GP: Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature genetics. 2000, 25: 315-319. 10.1038/77083. Spandidos DA, Sourvinos G, Tsatsanis C, Zafiropoulos A: Normal ras genes: their onco-suppressor and pro-apoptotic functions (review). Int J Oncol. 2002, 21: 237-41. Weyden van der L, Adams DJ: The Ras-association domain family (RASSF) members and their role in human tumourigenesis. Biochim Biophys Acta. 2007, 1776 (1): 58-85. Gitan RS, Shi H, Chen C-M, Yan PS, Huang TH-M: Methylation-Specific Oligonucleotide Microarray: A New Potential for High-Throughput Methylation Analysis. Genome Research. 2007, 12: 158-164. 10.1101/gr.202801. Burbee DG, Forgacs E, Zöchbauer-Müller S, Shivakumar L, Fong K, Gao B, et al: Epigenetic Inactivation of RASSF1A in Lung and Breast Cancers and Malignant Phenotype Suppression. Journal of the National Cancer Institute. 2001, 93: 691-699. 10.1093/jnci/93.9.691. Weyden van der L, Arends MJ, OM Dovey, HL Harrison, G Lefebvre, N Conte, FV Gergely, A Bradley, Adams DJ: Loss of Rassf1a cooperates with Apc(Min) to accelerate intestinal tumourigenesis. Oncogene. 2008, 27: 4503-4508. 10.1038/onc.2008.94. Agathanggelou A, Cooper WN, Latif F: Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res. 2005, 65: 3497-508. 10.1158/0008-5472.CAN-04-4088. Chow LS-N, Lo K-W, Kwong J, To K-F, Tsang K-S, Lam C-W, Dammann R, Huang DP: RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer. 2004, 109: 839-847. 10.1002/ijc.20079. Donninger H, Vos MD, Clark GJ: The RASSF1A tumor suppressor. Journal of Cell Science. 2007, 120: 3163-3172. 10.1242/jcs.010389. Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA: The RASSF1A Tumor Suppressor Blocks Cell Cycle Progression and Inhibits Cyclin D1 Accumulation. Molecular and Cellular biology. 2002, 22: 4309-4318. 10.1128/MCB.22.12.4309-4318.2002. Deng ZH, Wen JF, Li JH, Xiao DS, Zhou JH: Activator protein-1 involved in growth inhibition by RASSF1A gene in the human gastric carcinoma cell line SGC7901. World J Gastroenterol. 2008, 14: 1437-1443. 10.3748/wjg.14.1437. Song MS, Song SJ, Kim SJ, Nakayama K, Nakayama KI, Lim DS: Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitinmediated degradation at the G1-S transition. Oncogene. 2008, 27: 3176-3185. 10.1038/sj.onc.1210971. Foley CJ, Freedman H, Choo SL, Onyskiw C, Fu NY, Yu VC, Tuszynski J, Pratt JC, Baksh S: Dynamics of RASSF1A/MOAP-1 association with death receptors. Mol Cell Biol. 2008, 28: 4520-4535. 10.1128/MCB.02011-07. Rodriguez-Viciana P, Sabatier C, McCormick F: Signaling Specificity by Ras Family GTPases Is Determined by the Full Spectrum of Effectors They Regulate. Mol Cell Biol. 2004, 24: 4943-4954. 10.1128/MCB.24.11.4943-4954.2004. Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ: Ras Uses the Novel Tumor Suppressor RASSF1 as an Effector to Mediate Apoptosis. The Journal of biological chemistry. 2000, 275: 35669-35672. 10.1074/jbc.C000463200. Ortiz-Vegal S, Khokhlatchev A, Nedwidek M, Zhang X-F, Dammann R, Pfeifer GP, et al: The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene. 2002, 21: 1381-1390. 10.1038/sj.onc.1205192. Vos MD, Ellis CA, Elam C, Ulku AS, Taylor BJ, Clark GJ: RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor. J Biol Chem. 2003, 278: 28045-28051. 10.1074/jbc.M300554200. Yung WCW, Sham JST, Choy DTK, Ng MH: ras Mutations are Uncommon in Nasopharyngeal Carcinoma. Oral Oncol, Eur of cancer. 1995, 31B: 399-400. 10.1016/0964-1955(95)00046-1. Dammann R, Schagdarsurengin U, Liu L, Otto N, Gimm O, Dralle H, Boehm BO, Pfeifer GP, Hoang-Vu C: Frequent RASSF1A promoter hypermethylation and Kras mutations in pancreatic carcinoma. Oncogene. 2003, 22: 3806-3812. 10.1038/sj.onc.1206582. Kang S, Lee JM, Jeon ES, Lee S, Kim H, Kim HS, Seo SS, Park SY, Sidransky D, Dong SM: RASSF1A hypermethylation and its inverse correlation with BRAF and/or KRAS mutations in MSI-associated endometrial carcinoma. Int J Cancer. 2006, 119: 1316-1321. 10.1002/ijc.21991. Chang HW, Chan A, Kwong DLW, Wei WI, Sham JST, Yuen APW: Evaluation of hypermethylated tumor suppressor genes as tumor markers in mouth and throat rinsing fluid, nasopharyngeal swab and peripheral blood of nasopharyngeal carcinoma patient. Int J Cancer. 2003, 105: 851-855. 10.1002/ijc.11162. Fendri A, Masmoudi A, Khabir A, Sellami-Boudawara T, Daoud J, Frikha M, Ghorbel A, Gargouri A, Mokdad-Gargouri R: Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Bio Ther. 2009, 8 (5): 444-51.