Error bounds for spline interpolation over rectangular polygons

Journal of Approximation Theory - Tập 12 - Trang 113-126 - 1974
Lois Mansfield1
1Department of Computer Science, University of Kansas, Lawrence, Kansas 66044 U.S.A.

Tài liệu tham khảo

de Boor, 1963, Best approximation properties of spline functions of odd degree, J. Math. Mech., 12, 747 de Boor, 1966, The method of projections as applied to the numerical solution of two point boundary value problems using cubic splines de Boor, 1968, On uniform approximation by splines, J. Approx. Th., 1, 219, 10.1016/0021-9045(68)90026-9 de Boor, 1968, On the convergence of odd-degree spline interpolation, J. Approx. Th., 1, 452, 10.1016/0021-9045(68)90033-6 de Boor, 1973, Spline approximation by quasi-interpolants, J. Approx. Th., 8, 19, 10.1016/0021-9045(73)90029-4 Carlson, 1971, On piecewise polynomial interpolation in rectangular polygons, J. Approx. Th., 4, 37, 10.1016/0021-9045(71)90038-4 Carlson, 1973, Error bounds for bicubic spline interpolation, J. Approx. Th., 7, 41, 10.1016/0021-9045(73)90050-6 Gordon, 1969, Spline-blended surface interpolation through curve networks, J. Math. Mech., 18, 931 Hall, 1968, On error bounds for spline interpolation, J. Approx. Th., 1, 209, 10.1016/0021-9045(68)90025-7 Mansfield, 1971, On the optimal approximation of linear functionals in spaces of bivariate functions, SIAM J. Num. Anal., 8, 115, 10.1137/0708015 Mansfield, 1972, On the variational characterization and convergence of bivariate splines, Numer. Math., 20, 99, 10.1007/BF01404400 L. E. Mansfield, “On the variational approach to defining splines on L-shaped regions,” J. Approx. Th. (to appear). Sard, 1963