Compositional evolution of the muscovite of Renli pegmatite-type rare-metal deposit, northeast Hunan, China: Implications for its petrogenesis and mineralization potential

Ore Geology Reviews - Tập 138 - Trang 104380 - 2021
Peng Li1, Jiankang Li1, Zhenyu Chen1, Xiang Liu2, Zhibiao Huang2, Fangchun Zhou2
1MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
2311 Brigade of Hunan Nuclear Geology, Changsha 410011, China

Tài liệu tham khảo

Akoh, 2015, Geochemical evolution of micas and Sn-, Nb-, Ta- mineralization associated with the rare metal pegmatite in Angwan Doka, central Nigeria, J. Afr. Earth Sc., 112, 24, 10.1016/j.jafrearsci.2015.08.017 Ballouard, 2016, Nb-Ta fractionation in peraluminous granites: a marker of the magmatic-hydrothermal transition, Geology, 44, 10.1130/G38169Y.1 Ballouard, 2020, The magmatic and magmatic-hydrothermal evolution of felsic igneous rocks as seen through Nb-Ta geochemical fractionation, with implications for the origins of rare-metal mineralization, Earth Sci. Rev., 10.1016/j.earscirev.2020.103115 Breiter, 2007, Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesi-Czech Republic, Mineral. Petrol., 91, 225, 10.1007/s00710-007-0197-1 Breiter, 2017, Lithium and trace-element concentrations in trioctahedral micas from granites of different geochemical types measured via laser ablation ICP-MS, Mineral. Mag., 81, 15, 10.1180/minmag.2016.080.137 Buick, I.S., Storkey, A., Williams, I.S., 2008. Timing relationships between pegmatite emplacement, metamorphism and deformation during the intra-plate Alice Springs Orogeny, central Australia. J. Metamorph. Geol. 26, 915–936. https://doi.org/10. 1111/j.1525-1314.2008.00794.x. Černý, 1981, The cat lake-winnipeg river and the wekusko lake pegmatite fields, Manitoba, Man. Mineral Res. Div. Econ. Geol. Rept., ER80–1, 240 Černý, P., 1982a. Petrogenesis of granitic pegmatites. in “Granitic Pegmatites in science and industry,” P. ˇCerný, ed. Mineral. Assoc. Canada Short Course Handbook 8, 405–461. Černý, P., 1982b. Anatomy and classification of granitic pegmatites. In “Granitic Pegmatites in science and industry”, P. Černý, ed. Mineral. Assoc. Canada Short Course Handbook 8, 1–39. Černý, 1984, Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granite pegmatites, vol. 13, 257 Cˇerný, 1992, Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research, Appl. Geochem., 7, 393, 10.1016/0883-2927(92)90002-K Černý, 1995, Geochemical and structural evolution of micas in the Rozna and Dobra-Voda pegmatites, Czech Republic, Mineral Petrol, 55, 177, 10.1007/BF01162587 Černý, 2004, The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons, vol. 17, 184 Cerny, 2012, Granitic pegmatites as reflections of their sources, Elements, 8, 289, 10.2113/gselements.8.4.289 Charles, 2013, Timing, duration and role of magmatism in wide rift systems: insights from the Jiaodong Peninsula (China, East Asia), Gondwana Res., 24, 412, 10.1016/j.gr.2012.10.011 Charles, 2012, Metamorphic core complex dynamics and structural development: field evidences from the Liaodong Peninsula (China, East Asia), Tectonophysics, 560-561, 22, 10.1016/j.tecto.2012.06.019 Charles, 2011, Metamorphic core complex vs. synkinematic pluton in continental extension setting: insights from key structures (Shandong Province, eastern China), J. Asian Earth Sci., 40, 261, 10.1016/j.jseaes.2010.07.006 Charvet, 2010, Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen, J. Asian Earth Sci., 39, 309, 10.1016/j.jseaes.2010.03.006 Chaudhry, 1973, Lithium-aluminum micas from the Meldon aplite, Devonshire, England, Mineral. Mag., 39, 289, 10.1180/minmag.1973.039.303.05 Chevychelov, 2005, Effect of melt composition and temperature on the partitioning of Ta, Nb, Mn, and F between granitic (alkaline) melt and fluorine-bearing aqueous fluid: fractionation of Ta and Nb and conditions of ore formation in rare-metal granites, Petrol. c/c Petrol., 13, 305 Chu, 2012, Early Mesozoic tectonics of the South China block: Insights from the Xuefengshan intracontinental orogen, J. Asian Earth Sci., 61, 199, 10.1016/j.jseaes.2012.09.029 Chu, 2012, Tectonics of the Middle Triassic intracontinental Xuefengshan belt, South China: new insights from structural and chronological constraints on the basal décollement zone, Int. J. Earth Sci., 101, 2125, 10.1007/s00531-012-0780-5 Chu, 2012, Phanerozoic tectonothermal events of the Xuefengshan belt, central South China: implications from U-Pb age and Lu–Hf determinations of granites, Lithos, 150, 243, 10.1016/j.lithos.2012.04.005 Chu, 2014, Phanerozoic polyorogenic deformation in southern Jiuling massif, northern South China Block: constraints from structural analysis and geochronology, J. Asian Earth Sci., 86, 117, 10.1016/j.jseaes.2013.05.019 Clarke, 2003, Oscillatory epitactic-growth zoning in biotite and muscovite from the Lake Lewis leucogranite, South Mountain batholith, Nova Scotia, Canada, The Can. Mineral., 41, 1027, 10.2113/gscanmin.41.4.1027 Davis, 2010, Early Cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex, Inner Mongolia, China, Geosci. Front., 1, 1, 10.1016/j.gsf.2010.08.001 Faure, M., Shu, L.S., Wang, B., Charvet, J., Choulet, F., Monié, P., 2009. Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova 21, 360–368. Foord, 1995, Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith, ColoradoGlimmer aus dem Pikes Peak batholith, Colorado, Mineral. Petrol., 55, 1, 10.1007/BF01162576 Foster, 1960, Interpretation of the composition of lithium-micas, US Geol Survey Prof Paper, 354B, 11 Gordiyenko, V.V., 1970. Mineralogy, Geochemistry and Genesis of the Spodumene Pegmatites. Nedra, Leningrad, 237 p. (in Russian). Hou, 2018. Comparative study on diagenetic-metallogenic characteristics and tectonic environment of two types of pegmatites in China. Beijing: Chinese Academy of Geological Sciences (doctoral dissertation), 23–85 (in Chinese with English abstract). Hulsbosch, 2014, Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups, Geochim. Cosmochim. Acta, 132, 349, 10.1016/j.gca.2014.02.006 Ji, 2017, Origin of the late Jurassic to early Cretaceous peraluminous granitoids in the northeastern Hunan province (middle Yangtze region), south China: geodynamic implications for the paleo-pacific subduction, J. Asian Earth Sci., 141, 174, 10.1016/j.jseaes.2016.07.005 Ji, 2017, The Early Cretaceous orogen-scale Dabieshan metamorphic core complex: implications for extensional collapse of the Triassic HP–UHP orogenic belt in east-central China, Int. J. Earth Sci., 106, 1311, 10.1007/s00531-016-1311-6 Ji, 2018, Multiple emplacement and exhumation history of the late Mesozoic Dayunshan-Mufushan batholith in southeast China and its tectonic significance: 2. magnetic fabrics and gravity survey, J. Geophys. Res. Solid Earth, 123, 711, 10.1002/2017JB014598 Jolliff, 1992, Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA, Geochim. Cosmochim. Acta, 56, 1915, 10.1016/0016-7037(92)90320-I Kile, 1998, Micas from the Pikes Peak Batholith and its cogenetic granitic pegmatites, Colorado: optical properties, composition, and correlation with pegmatite evolution, Can. Mineral., 36, 463 Knoll, 2018, Spodumene pegmatites and related leucogranites from the austroalpine unit (eastern alps, central europe): Field relations, petrography, geochemistry, and geochronology, Can. Mineral., 56, 489, 10.3749/canmin.1700092 Li, 2015, In situ analyses of micas in the Yashan granite, South China: constraints on magmatic and hydrothermal evolution of W and Ta-Nb bearing granites, Ore Geol. Rev., 65, 793, 10.1016/j.oregeorev.2014.09.028 Li, 2021, Tungsten mineralization during evolution of a magmatic-hydrothermal system: mineralogical evidence from the Xihuashan rare-metal granite in South China, Am. Mineral., 106, 443, 10.2138/am-2020-7514 Li, 2019, Tantalum and niobium mineralization from f- and cl-rich fluid in the lepidolite-rich pegmatite from the renli deposit in northern hunan, china: constraints of fluid inclusions and lepidolite crystallization experiments, Ore Geol. Rev., 115 Li, 2019, A review of niobium and tantalum metallogenic regularity in China (in Chinese with English abstract), Chin. Sci. Bull., 64, 1545, 10.1360/N972018-00933 Li, 2019, Mineralogical and geochemical characteristics of Renli-Chuanziyuan No. 5 pegmatite, NE Hunan, and its metallogenic epoch, Chin. Sci. Bull., 93, 1374 Li, P.C., 2006. Magmatism of Phanerozoic granitoids in southeastern Hunan province, China and its evolution regularity. Beijing: School of the Chinese Academy of Sciences (Doctoral Dissertation): 1-103 (in Chinese with English abstract). Li, P., 2017. Magmatic Activities And metallogenic regularity of rare metals of Mufushan area. Beijing: Institute of Mineral Resources, Chinese Academy of Geological Sciences (post-doctoral report): 38-97 (in Chinese with English abstract). Li, 2017, Multistage magmatic evolution and Cretaceous peak metallogenic epochs of Mufushan composite granite mass: constrains from geochronological evidence, Earth Sci., 42, 1684 Li, P., Li, J.K., Liu, X., Li, C., Huang, Z.B., Zhou, F.C. 2020. Geochronology and source of the rare-metal pegmatite in the Mufushan area of the Jiangnan orogenic belt: A case study of the giant Renli Nb–Ta deposit in Hunan, China. Ore Geol. Rev. 116 (2020) 103237. https:// doi.org/10.1016/j.oregeorev.2019.103237. Li, 2009, Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks, Precambr. Res., 174, 117, 10.1016/j.precamres.2009.07.004 Li, Z.X., 1998. Tectonic history of the major East Asian lithospheric blocks since the mid-Proterozoic: a synthesis. Mantle Dynamics and Plate Interactions in East Asia 27, 221–243. Li, 2010, Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions, Geol. Soc. Am. Bull., 122, 772, 10.1130/B30021.1 Van Lichtervelde, 2008, Trace element geochemistry by laser ablation ICP-MS of micas associated with ta mineralization in the Tanco pegmatite, Manitoba, Canada, Contribut. Mineral. Petrol., 155, 791, 10.1007/s00410-007-0271-z Lin, 2008, Phanerozoic tectonics of south China block: new insights from the polyphase deformation in the Yunkai massif, Tectonics, 27, 10.1029/2007TC002207 Linnen, 1997, Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the earth's crust, Contrib. Miner. Petrol., 128, 213, 10.1007/s004100050304 Liu, 2014, New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China, and identification of its parental pluton, Ore Geol. Rev., 56, 209, 10.1016/j.oregeorev.2013.08.020 Liu, 2008, In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard, Chem. Geol., 257, 34, 10.1016/j.chemgeo.2008.08.004 Liu, 2015, Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit, Lithos, 212-215, 128, 10.1016/j.lithos.2014.11.002 Liu, 2016, Shrimp U-Pb zircon ages, mineral compositions and geochemistry of placer nephrite in the Yurungkash and Karakash river deposits, west Kunlun, Xinjiang, northwest China: implication for a magnesium skarn, Ore Geol. Rev., 72, 699, 10.1016/j.oregeorev.2015.08.023 Liu, 2017, A synthesis of mineralization styles with an integrated genetic model of carbonatite-syenite-hosted REE deposits in the Cenozoic Mianning-Dechang REE metallogenic belt, the eastern Tibetan Plateau, southwestern China, J Asian Earth Sci, 137, 35, 10.1016/j.jseaes.2017.01.010 Liu, 2019, Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): insights from mineralogy, fluid inclusions, and trace-element geochemistry, Miner. Deposita, 54, 701, 10.1007/s00126-018-0836-y London, 2014, A petrologic assessment of internal zonation in granitic pegmatites, Lithos, 184–187, 74, 10.1016/j.lithos.2013.10.025 London, 2018, Ore-forming processes within granitic pegmatites, Ore Geol. Rev., 101, 349, 10.1016/j.oregeorev.2018.04.020 Lopes Nunes, J.E., 1973. Contribution à l'étude minéralogique et géochimique des pegmatites du Mozambique. Sei. de la Terre, Nancy, Mém. 26, 261 p (in French). Ma, 2020. The Mineralization and Tectonic Significance of the Pegmatite Type Rare Metal Ore Field in Markang area, Western Sichuan. Beijing: Chinese Academy of Geological Sciences (post-doctoral report): 57-81 (in Chinese with English abstract). Manuylova, 1966, Distribution of alkali metals and beryllium in pegmatite minerals from the North Baikalian pegmatite belt, Geokhimiya, 410 Martins, 2012, Geochemistry and evolution of micas in the Barroso-Alvao pegmatite field, Northern Portugal, Can. Mineral, 50, 1117, 10.3749/canmin.50.4.1117 Michallik, 2017, Chemical evolution and origin of the Luumki gem beryl pegmatite: constraints from mineral trace element chemistry and fractionation modeling, Lithos, 274–275, 147, 10.1016/j.lithos.2017.01.001 Morteani, 1995, The Achala granitic complex and the pegmatites of the Sierras Pampeanas (Northwest Argentina): a study of differentiation, Econ. Geol., 90, 636, 10.2113/gsecongeo.90.3.636 Müller, A., Ihlen, P.M., Bingen, B., Snook, B., Romer, R., 2015. The Sveconorwegian Pegmatite Province: 5000 pegmatite and no parental granites? 7th International Symposium on Granitic Pegmatites, PEG 2015 Ksiqź, Poland, Book of Abstracts, 58–59. Oyarzábal, 2010, Geochemistry of K-feldspar and muscovite in rare-element pegmatites and granites from the Totoral pegmatite field, San Luis, Argentina, Resourc. Geol., 59, 315, 10.1111/j.1751-3928.2009.00100.x Rosing-Schow, 2018, A comparison of the mica geochemistry of the pegmatite fields in southern norway, Can. Mineral., 56, 463, 10.3749/canmin.1700086 Nash, 1985, Partition coefficients for trace elements in silicic magmas, Geochim. Cosmochim. Acta, 49, 2309, 10.1016/0016-7037(85)90231-5 Novak, 2012, Contrasting origins of the mixed (NYF + LCT) signature in granitic pegmatites, with examples from the Moldanubian zone, Czech Republic, Can. Mineral., 50, 1077, 10.3749/canmin.50.4.1077 O’Connor, 1991, Genesis of lithium pegmatites from the Leinster Granite margin, southeast Ireland: geochemical constraints, Geol. J., 26, 295, 10.1002/gj.3350260403 Pesquera, 1999, Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Caceres, Spain), Am. Mineral., 84, 55, 10.2138/am-1999-1-206 Quensel, 1956, The paragenesis of the Varutrásk pegmatite, including a review of its mineral assemblage, Ark. Mineral. Geol., 2, 9 Raimbault, 1998, The Richemont rhyolite dyke, Massif Central, France; a subvolcanic equivalent of rare-metal granites, Can. Mineral., 36, 265 Renata, 2016, The origin of spodumene pegmatites associated with the leinster granite in southeast ireland, Can. Mineral., 54, 847, 10.3749/canmin.1600027 Rieder, 1998, Nomenclature of the micas, Can. Mineral., 36, 905 Roda-Robles, 1995, Micas of the muscovite-lepidolite series from the Fregeneda pegmatites (Salamanca, Spain)Glimmerminerale der Muscovit-Lepidolith-Serie aus den Pegmatiten von Fregeneda, Salamanca, Spanien, Mineral. Petrol., 55, 145, 10.1007/BF01162585 Roda-Robles, 2005, Origin and internalevol ution of the Li-F-Be-B-P-bearing Pinilla de Fermoselle pegmatite (CentralIberian Zone, Zamora, Spain), Am. Mineral., 90, 1887, 10.2138/am.2005.1825 Roda-Robles, 2006, Mineralogy and geochemistry of micas from the Pinilla de Fermoselle pegmatite (Zamora, Spain), Eur. J. Mineral., 18, 369, 10.1127/0935-1221/2006/0018-0369 Roda-Robles, 2007, Micas of the muscovite–lepidolite series from Karibib pegmatites, Namibia, Mineral. Magaz., 71, 41, 10.1180/minmag.2007.071.1.41 Roda-Robles, 2018, Petrogenetic relationships between variscan granitoids and Li-(F-P)-rich aplite-pegmatites in the central iberian zone: geological and geochemical constraints and implications for other regions from the European Variscides, Ore Geol. Rev. J. Comprehens. Stud. Ore Genesis Ore Exploration, 95, 408 Stepanov, A.S., Hermann, J., 2013. Fractionation of Nb and Ta by biotite and phengite: implications for the “missing Nb paradox”. Geology 41, 303–306. Stepanov, 2014, The key role of mica during igneous concentration of tantalum, Contrib. Miner. Petrol., 167, 1009, 10.1007/s00410-014-1009-3 Stern, 1966, Zur Mineralchemie von Glimmern aus Tessiner Pegmatiten, Schweiz. Mineral. Petrogr. Mitt., 46, 137 Shu, 2014, Intraplate tectono-magmatism in the Cathaysia Block (South China): evidence from stratigraphic, structural, geochemical and geochronological investigations, Am. J. Sci., 314, 154, 10.2475/01.2014.05 Shu, 2002, Late Mesozoic tectonism of Southeast China, Geol. Rev., 48, 249 Simons, 2017, Fractionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the peraluminous early permian variscan granites of the cornubian batholith: precursor processes to magmatic-hydrothermal mineralisation, Lithos, 278-281, 491, 10.1016/j.lithos.2017.02.007 Sun, S.S., Mcdonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. geological society of london special publication 42(1), 313–345. Sun, Z.Y., Wang, J.B., Wang, Y.W., Long, L.L., 2020. Zircon and garnet U-Pb dating and in situ trace element of magnetite from the Hongyuntan fe deposit, eastern Tianshan, NW China. Ore Geology Reviews 127(1), 103813.Thomas, R., Webster, J.D., Heinrich, W., 2000. Melt inclusions in pegmatite quartz: Complete miscibility between silicate melts and hydrous fluids at low pressure. Contributions to Mineralogy and Petrology 139(4), 394–401. Tindle, 1990, Estimation of lithium content in trioctahedral micas using microprobe data: application to micas from granitic rocks, Eur. J. Mineral, 5, 595, 10.1127/ejm/2/5/0595 Tischendorf, 1997, On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphicalrepresentation, Mineral. Mag., 61, 809, 10.1180/minmag.1997.061.409.05 Viana, 2007, Geochemistry of muscovite from pegmatites of the Eastern Brazilian pegmatite province: a clue to petrogenesis and mineralization potential, Eur. J. Mineral., 19, 745, 10.1127/0935-1221/2007/0019-1760 Vieira, 2011, Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal), Am. Mineral., 96, 637, 10.2138/am.2011.3584 Vladykin, 1974, Mineralogy, geochemistry and genesis of rare-element topaz-lepidolite-albite pegmatites of the Mongolian People's Republic, Trudy Mineral. Museum Acad. Sci. USSR., 23, 6 Wang, 2002, 1 Wang, 2012, Late Mesozoic basin and range tectonics and related magmatism in southeast China, Geosci. Front., 3, 109, 10.1016/j.gsf.2011.11.007 Wang, 2014, Genesis of leucogranite by prolonged fractional crystallization: a case study of the Mufushan Complex, south China, Lithos, 206-207, 147, 10.1016/j.lithos.2014.07.026 Wang, 2016, Petrogenesis and tectonic evolution of Lianyunshan complex, south China: insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan orogen, Gondwana Res., 39, 114, 10.1016/j.gr.2016.06.015 Wang, 2013, Phanerozoic tectonics of the South China Block: Key observations and controversies, Gondwana Res., 23, 1273, 10.1016/j.gr.2012.02.019 Wise, 1995, Trace element chemistry of lithiumrich micas from rare-element granitic pegmatitesSpurenelement-Chemie von Lithium-reichen Glimmern aus granitischen Pegmatiten, Mineral. Petrol., 55, 203, 10.1007/BF01162588 Xiong, 2020, Granite–pegmatite connection and mineralization age of the giant Renli Ta-Nb deposit in South China: Constraints from U-Th–Pb geochronology of coltan, monazite, and zircon, Lithos, 358-359, 105422, 10.1016/j.lithos.2020.105422 Xu, 2019, Zircon U-Pb age and Hf isotopic composition of porphyaceous biotite granite in south margin of Mufushan and their geological implications, Mineral Deposits, 38, 1053 Xu, 2017, Zircon U-Pb geochronological and geochemical characteristics of the Lianyunshan two-mica monzogranites in northeastern Hunan province: implications for petrogenesis and tectonic setting associated with polymetallic mineralization, Earth Sci. Front., 24, 104 Yin, 2019, Textural and chemical variations of micas as indicators for tungsten mineralization: Evidence from highly evolved granites in the Dahutang tungsten deposit, South China, Am. Mineral., 104, 949, 10.2138/am-2019-6796 Zhang, 2004, Chemical evolution of Nb-Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China, Mineral. Mag., 68, 739, 10.1180/0026461046850216 Zhao, J.H., Zhou, M.F., Yan, D.P., Zheng, J.P., Li, J.W., 2011. Reappraisal of the ages of Neoproterozoic strata in South China: no connection with the Grenvillian orogeny. Geology 39, 299–302. Zhou, 2019, Metallogenic characteristics and prospecting direction of Renli super-large rare metal deposit in Hunan province, China, Geotectonica et Metallogenia, 43, 77 Zhou, 2000, Origin of late Mesozoic igneous rocks in southeastern China: implications for lithosphere subduction and underplating of mafic magmas, Tectonophysics, 326, 269, 10.1016/S0040-1951(00)00120-7 Zhou, 2006, Petrogenesis of Mesozoic granitoids and volcanic rocks in south China: a response to tectonic evolution, Episodes, 29, 26, 10.18814/epiiugs/2006/v29i1/004 Zhu, 2015, Rapid change from compression to extension in the North China craton during the Early Cretaceous: evidence from the Yunmengshan metamorphic core complex, Tectonophysics, 656, 91, 10.1016/j.tecto.2015.06.009