Characterisation of elastic-plastic material characteristics of Sn solid solution, SbSn and Cu6Sn5 in the tin-based sliding bearing alloy SnSb12Cu6ZnAg

Materials Science and Engineering: A - Tập 724 - Trang 566-575 - 2018
C. Sous1, G. Jacobs1, T. Lutz2
1MSE, Institute for Machine Elements and Systems Engineering, RWTH Aachen University, Aachen, Germany
2Natural and Medical Sciences Institute at the University of Tübingen, University of Tübingen, Tübingen, Germany

Tài liệu tham khảo

International Standard Organisation, 2013 Nogita, 2010, Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys, Intermetallics, 18, 145, 10.1016/j.intermet.2009.07.005 W. Hilgers, Gleitlagerwerkstoffe, in: Th. Goldschmidt (Ed.), Gleitlagertechnik, Th. Goldschmidt AG, Essen, 1992, pp. 7–25. ECKA Granulate GmbH & Co. KG, Gleitlagerlegierung ECKA TEGOSTAR, ECKA Granulate GmbH & Co. KG, Essen, 2012, pp. 1–2. Doerner, 1986, A method for interpreting the data from depth-sensing indentation instruments, J. Mater. Res., 1, 601, 10.1557/JMR.1986.0601 Oliver, 1992, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564, 10.1557/JMR.1992.1564 Oliver, 2004, Measurement of hardness and elastic modulus by instrumented indentation, J. Mater. Res., 19, 3, 10.1557/jmr.2004.19.1.3 Dao, 2001, Computational modeling of the forward and reverse problems in instrumented sharp indentation, Acta Mater., 49, 3899, 10.1016/S1359-6454(01)00295-6 Poole, 1996, Micro-hardness of annealed and work-hardened copper polycrystals, Scr. Mater., 34, 559, 10.1016/1359-6462(95)00524-2 Deng, 2004, Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation, Acta Mater., 52, 4291, 10.1016/j.actamat.2004.05.046 Anton Paar GmbH, Instrumented Indentation Testers, in: Anton Paar GmbH (Ed.), Mechanical Characterization of Materials, Graz, 2016. Qin, 2007, The effect of indenter angle on the microindentation hardness, Acta Mater., 55, 6127, 10.1016/j.actamat.2007.07.016 Bressan, 2005, Modeling of nanoindentation of bulk and thin film by finite element method, Wear, 258, 115, 10.1016/j.wear.2004.05.021 Tho, 2005, Simulation of instrumented indentation and material characterization, Mater. Sci. Eng.: A, 390, 202, 10.1016/j.msea.2004.08.037 N. Conté, Anton Paar, S.A. TriTec, Advanced Mechanical Surface Testing, in: Anton Paar GmbH (Ed.), Application Report, Graz, 2017. Yang, 2008, Nanoindentation identifications of mechanical properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds derived by diffusion couples, Mater. Sci. Eng.: A, 485, 305, 10.1016/j.msea.2007.07.093 King, 1987, Elastic analysis of some punch problems for a layered medium, Int. J. Solids Struct., 23, 1657, 10.1016/0020-7683(87)90116-8 Qin, 2009, The equivalence of axisymmetric indentation model for three-dimensional indentation hardness, J. Mater. Res., 24, 776, 10.1557/jmr.2009.0095 Wang, 1997, Roughness improvement and hardness enhancement in nanoscale Al/AlN multilayered thin films, Appl. Phys. Lett., 71, 1951, 10.1063/1.119752 Tsukamoto, 2009, Nanoindentation characterization of intermetallic compounds formed between Sn–Cu (–Ni) ball grid arrays and Cu substrates, Mater. Sci. Eng.: B, 164, 44, 10.1016/j.mseb.2009.06.013 Cabarat, 1949, The elastic properties of metallic alloys, J. Inst. Metals, 75 Deng, 2004, Young's modulus of (Cu, Ag)–Sn intermetallics measured by nanoindentation, Mater. Sci. Eng.: A, 364, 240, 10.1016/j.msea.2003.08.032 Y. Rémond, H. Garmestani, M. Baniassadi, S. Ahzi, Applied RVE reconstruction and homogenization of heterogeneous materials, iSTE, London, UK, Hoboken, NJ, USA, 2016. Bucaille, 2003, Determination of plastic properties of metals by instrumented indentation using different sharp indenters, Acta Mater., 51, 1663, 10.1016/S1359-6454(02)00568-2