Multilayer approach reveals organizational principles disrupted in breast cancer co-expression networks
Tóm tắt
The study of co-expression programs in the context of cancer can help to elucidate the genetic mechanisms that are altered and lead to the disease. The identification of gene co-expression patterns, unique to healthy profiles (and absent in cancer) is an important step in this direction. Networks are a good tool for achieving this as they allow to model local and global structural properties of the gene co-expression program. This is the case of gene co-expression networks (GCNs), where nodes or vertices represent genes and an edge between two nodes exists if the corresponding genes are co-expressed. Single threshold co-expression networks are often used for this purpose. However, important interactions in a broader co-expression space needed to unravel such mechanisms may be overlooked. In this work, we use a multilayer network approach that allows us to study co-expression as a discrete object, starting at weak levels of co-expression building itself upward towards the top co-expressing gene pairs.We use a multilayer GCNs (or simply GCNs), to compare healthy and breast cancer co-expression programs. By using the layers of the gene co-expression networks, we were able to identify a structural mechanism unique in the healthy GCN similar to well-known preferential attachment. We argue that this mechanism may be a reflection of an organizational principle that remains absent in the breast cancer co-expression program. By focusing on two well-defined set of nodes in the top co-expression layers of the GCNs—namely hubs and nodes in the main core of the network—we found a set of genes that is well conserved across the co-expression program. Specifically, we show that nodes with high inter-connectedness as opposed to high connectedness are conserved in the healthy GCN. This set of genes, we discuss, may partake in several different functional pathways in the regulatory program. Finally, we found that breast cancer GCN is composed of two different structural mechanisms, one that is random and is composed by most of the co-expression layers, and another non-random mechanism found only in the top co-expression layers.Overall, we are able to construct within this approach a portrait of the whole transcriptome co-expression program, thus providing a novel manner to study this complex biological phenomenon.
Tài liệu tham khảo
Al-garadi, MA, Varathan KD, Ravana SD (2017) Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method. Phys A Stat Mech Appl 468:278–288.
Alcalá-Corona, SA, de Anda-Jáuregui G, Espinal-Enríquez J, Hernández-Lemus E (2017) Network modularity in breast cancer molecular subtypes. Front Physiol 8:915.
Alstott, J, Bullmore E, Plenz D (2014) powerlaw: a python package for analysis of heavy-tailed distributions. PLoS ONE 9(1):85777.
Barabási, A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512.
Barabási, A-L, et al (2016) Network Science. Cambridge university press, Cambridge.
Barthélemy, M, Barrat A, Pastor-Satorras R, Vespignani A (2005) Characterization and modeling of weighted networks. Phys A Stat Mech Appl 346(1-2):34–43.
Basso, K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, Califano A (2005) Reverse engineering of regulatory networks in human B cells,. Nat Genet 37(4):382–90. https://doi.org/10.1038/ng1532.
Boccaletti, S, Bianconi G, Criado R, Del Genio CI, Gómez-Gardenes J, Romance M, Sendina-Nadal I, Wang Z, Zanin M (2014) The structure and dynamics of multilayer networks. Phys Rep 544(1):1–122.
Broido, AD, Clauset A (2019) Scale-free networks are rare. Nat Commun 10(1):1–10.
Consortium, GO (2004) The gene ontology (go) database and informatics resource. Nucleic Acids Res 32(suppl_1):258–261.
de Anda-Jáuregui, G, Alcalá-Corona SA, Espinal-Enríquez J, Hernández-Lemus E (2019) Functional and transcriptional connectivity of communities in breast cancer co-expression networks. Appl Netw Sci 4(1):22.
de Anda-Jáuregui, G, Espinal-Enriquez J, Hernández-Lemus E (2019) Spatial organization of the gene regulatory program: An information theoretical approach to breast cancer transcriptomics. Entropy 21(2):195.
de Anda-Jáuregui, G, Fresno C, García-Cortés D, Enríquez JE, Hernández-Lemus E (2019) Intrachromosomal regulation decay in breast cancer. Appl Math Nonlinear Sci 4(1):223–230.
de Anda-Jáuregui, G, Velázquez-Caldelas TE, Espinal-Enríquez J, Hernández-Lemus E (2016) Transcriptional network architecture of breast cancer molecular subtypes. Front Physiol 7:568.
Emmert-Streib, F, Glazko GV, Altay G, de Matos Simoes R (2012) Statistical inference and reverse engineering of gene regulatory networks from observational expression data. Front Genet 3:8. https://doi.org/10.3389/fgene.2012.00008.
Espinal-Enriquez, J, Fresno C, de Anda-Jáuregui G, Hernández-Lemus E (2017) Rna-seq based genome-wide analysis reveals loss of inter-chromosomal regulation in breast cancer. Sci Rep 7(1):1760.
Friedman, N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data,. J Comput Biol J Comput Mol Cell Biol 7(3-4):601–20. https://doi.org/10.1089/106652700750050961.
García-Cortés, D, de Anda-Jáuregui G, Fresno C, Hernandez-Lemus E, Espinal-Enriquez J (2020) Gene co-expression is distance-dependent in breast cancer. Front Oncol 10:1232. https://www.frontiersin.org/article/10.3389/fonc.2020.01232, doi:https://doi.org/10.3389/fonc.2020.01232. 2234-943X.
Hagberg, A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
Helsen, J, Frickel J, Jelier R, Verstrepen KJ (2019) Network hubs affect evolvability. PLoS Biol 17(1):3000111.
Hernández-Lemus, E, Rangel-Escareño C (2011) The role of information theory in gene regulatory network inference. Inf Theory New Res:109–144.
Hernández-Lemus, E, Reyes-Gopar H, Espinal-Enríquez J, Ochoa S (2019) The many faces of gene regulation in cancer: A computational oncogenomics outlook. Genes 10(11):865.
Hernández-Lemus, E, Velázquez-Fernández D, Estrada-Gil JK, Silva-Zolezzi I, Herrera-Hernández MF, Jiménez-Sánchez G (2009) Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms. Physica A Stat Mech Appl 388(24):5057–5069.
Holland, PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: First steps. Soc Netw 5(2):109–137.
Holme, P (2019) Rare and everywhere: Perspectives on scale-free networks. Nat Commun 10(1):1–3.
Hurst, LD (2017) It’s easier to get along with the quiet neighbours. Mol Syst Biol 13(9):943. https://doi.org/10.15252/msb.20177961.
Hurst, LD, Pál C, Lercher MJ (2004) The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 5(4):299.
Inaki, K, Menghi F, Woo XY, Wagner JP, Jacques P. -É., Lee YF, Shreckengast PT, Soon WW, Malhotra A, Teo AS, et al (2014) Systems consequences of amplicon formation in human breast cancer. Genome Res 24(10):1559–1571.
James, G, Witten D, Hastie T, Tibshirani R (2013) An Introduction to Statistical Learning, vol. 112. Springer, Switzerland.
Jeong, H, Mason SP, Barabási A-L, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42.
Jeong, H, Néda Z, Barabási A-L (2003) Measuring preferential attachment in evolving networks. EPL (Europhys Lett) 61(4):567.
Kitsak, M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888.
Kivelä, M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA (2014) Multilayer networks. J Complex Netw 2(3):203–271.
Lehmann, S, Jackson AD, Lautrup B (2004) Life, death and preferential attachment. EPL (Europhys Lett) 69(2):298.
Liu, R, Cheng Y, Yu J, Lv Q-L, Zhou H-H (2015) Identification and validation of gene module associated with lung cancer through coexpression network analysis. Gene 563(1):56–62.
Liu, Y, Tang M, Zhou T, Do Y (2015) Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Sci Rep 5:9602.
Madhamshettiwar, PB, Maetschke SR, Davis MJ, Reverter A, Ragan MA (2012) Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets. Genome Med 4(5):41.
Marbach, D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Aderhold A, Bonneau R, Chen Y, et al (2012) Wisdom of crowds for robust gene network inference. Nat Methods 9(8):796.
Margolin, AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7:7. BioMed Central.
Margolin, AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context,. BMC bioinformatics 7 Suppl 1:7. https://doi.org/10.1186/1471-2105-7-S1-S7.
Margolin, AA, Wang K, Lim WK, Kustagi M, Nemenman I, Califano A (2006) Reverse engineering cellular networks,. Nat Protoc 1(2):662–71. https://doi.org/10.1038/nprot.2006.106.
McKinney, W (2012) Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O’Reilly Media, Inc., California.
Menghi, F, Inaki K, Woo X, Kumar PA, Grzeda KR, Malhotra A, Yadav V, Kim H, Marquez EJ, Ucar D, et al (2016) The tandem duplicator phenotype as a distinct genomic configuration in cancer. Proc Natl Acad Sci 113(17):2373–2382.
Newman, ME (2001) Clustering and preferential attachment in growing networks. Phys Rev E 64(2):025102.
Newman, ME (2002) Assortative mixing in networks. Phys Rev Lett 89(20):208701.
Newman, ME (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256.
Nielsen, TD, Jensen FV (2009) Bayesian Networks and Decision Graphs. Springer, Switzerland.
Nowicki, K, Snijders TAB (2001) Estimation and prediction for stochastic blockstructures. J Am Stat Assoc 96(455):1077–1087.
Pedregosa, F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al (2011) Scikit-learn: Machine learning in python. J Mach Learn Res 12(Oct):2825–2830.
Price, DJDS (1965) Networks of scientific papers. Science:510–515.
Price, D. d. S. (1976) A general theory of bibliometric and other cumulative advantage processes. J Am Soc Inf Sci 27(5):292–306.
Seabold, S, Perktold J (2010) Statsmodels: Econometric and statistical modeling with python In: Proceedings of the 9th Python in Science Conference, vol. 57, 61. Scipy.
Seidman, SB (1983) Network structure and minimum degree. Soc Netw 5(3):269–287.
Shapiro, SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52(3/4):591–611.
Slamon, DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,. Science (New York, N.Y.) 235(4785):177–82. https://doi.org/10.1126/science.3798106.
Sørlie, T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lønning PE, Børresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications,. Proc Natl Acad Sci USA 98(19):10869–74. https://doi.org/10.1073/pnas.191367098.
Teschendorff, AE, Severini S (2010) Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst Biol 4(1):104.
Toffoli, S, Bar I, Abdel-Sater F, Delrée P, Hilbert P, Cavallin F, Moreau F, Van Criekinge W, Lacroix-Triki M, Campone M, Martin AL, Roché H, Machiels JP, Carrasco J, Canon JL (2014) Identification by array comparative genomic hybridization of a new amplicon on chromosome 17q highly recurrent in BRCA1 mutated triple negative breast cancer. Breast Cancer Res 16(1). https://doi.org/10.1186/s13058-014-0466-y.
Tomczak, K, Czerwińska P, Wiznerowicz M (2015) The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge,. Contemp Oncol(Poznan, Poland) 19(1A):68–77. https://doi.org/10.5114/wo.2014.47136.
Tovar, H, García-Herrera R, Espinal-Enríquez J, Hernández-Lemus E (2015) Transcriptional master regulator analysis in breast cancer genetic networks. Comput Biol Chem 59:67–77.
Van Der Walt, S, Colbert SC, Varoquaux G (2011) The numpy array: a structure for efficient numerical computation. Comput Sci Eng 13(2):22.
Wang, Z, Gerstein M, Snyder M (2009) Rna-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57.
Wang, Z, Hou Z, Xin H (2005) Internal noise stochastic resonance of synthetic gene network. Chem Phys Lett 401(1-3):307–311. https://doi.org/10.1016/j.cplett.2004.11.064.
Wang, GZ, Lercher MJ, Hurst LD (2011) Transcriptional coupling of neighboring genes and gene expression noise: Evidence that gene orientation and noncoding transcripts are modulators of noise. Genome Biol Evol 3(1):320–331. https://doi.org/10.1093/gbe/evr025.
Weinstein, JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM, Network CGAR, et al (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45(10):1113.
West, J, Bianconi G, Severini S, Teschendorff AE (2012) Differential network entropy reveals cancer system hallmarks. Sci Rep 2:802.
Yang, Y, Han L, Yuan Y, Li J, Hei N, Liang H (2014) Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun 5:3231.
Zhang, B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 4(1). https://doi.org/10.2202/1544-6115.1128.
Zhou, Y, Luoh SM, Zhang Y, Watanabe C, Wu TD, Ostland M, Wood WI, Zhang Z (2003) Genome-wide identification of chromosomal regions of increased tumor expression by transcriptome analysis. Cancer Res 63(18):5781–5784.