Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies
Tài liệu tham khảo
Zheng, 2017, Chem. Soc. Rev., 46, 1427, 10.1039/C6CS00403B
Liu, 2016, Science, 352, 1210, 10.1126/science.aaf5039
Banerjee, 2016, Nature, 531, 215, 10.1038/nature17185
Li, 2014, Nature, 508, 504, 10.1038/nature13249
Aresta, 2013, Philos. Trans. A Math. Phys. Eng. Sci., 371, 20120111, 10.1098/rsta.2012.0111
Aresta, 2014, Chem. Rev., 114, 1709, 10.1021/cr4002758
Schwander, 2016, Science, 354, 900, 10.1126/science.aah5237
Wagner, 2016, Science, 354, 114, 10.1126/science.aaf9284
Lee, 2016, Adv. Energy Mater., 6, 1502207, 10.1002/aenm.201502207
Beller, 2014, Angew. Chem. Int. Ed., 53, 4527, 10.1002/anie.201402963
Schuchmann, 2013, Science, 342, 1382, 10.1126/science.1244758
Ji, 2017, Fuel Process. Technol., 156, 429, 10.1016/j.fuproc.2016.10.004
Chang, 2017, Chem. Eng., 5, 1659
Yang, 2016, Physica A, 464, 191, 10.1016/j.physa.2016.07.074
Yuen, 2016, Environ. Sci. Pollut. Res., 23, 22309, 10.1007/s11356-016-6512-9
Helwani, 2016, Energy Sources Part A: Recovery Util. Environ. Eff., 38, 606, 10.1080/15567036.2013.813991
Xie, 2016, Environ. Earth Sci., 75, 615, 10.1007/s12665-016-5352-8
Bhardwaj, 2016, Ind. Eng. Chem. Res., 55, 2946, 10.1021/acs.iecr.5b04925
Yang, 2016, Nanoscale Horiz., 1, 185, 10.1039/C5NH00113G
Li, 2016, ACS Catal., 6, 7485, 10.1021/acscatal.6b02089
Ong, 2015, Chem. Commun., 51, 858, 10.1039/C4CC08996K
Low, 2015, J. Phys. Chem. Lett., 6, 4244, 10.1021/acs.jpclett.5b01610
Kumar, 2015, Green Chem., 17, 1605, 10.1039/C4GC01400F
Tu, 2014, Adv. Mater., 26, 4607, 10.1002/adma.201400087
Ong, 2014, Nano Res., 7, 1528, 10.1007/s12274-014-0514-z
Atsonios, 2016, Int. J. Hydrog. Energ., 41, 792, 10.1016/j.ijhydene.2015.12.001
Li, 2015, Nanoscale, 7, 8663, 10.1039/C5NR00092K
Pakhare, 2014, Chem. Soc. Rev., 43, 7813, 10.1039/C3CS60395D
Grabow, 2011, ACS Catal., 1, 365, 10.1021/cs200055d
Ashcroft, 1991, Nature, 352, 225, 10.1038/352225a0
Ganesh, 2016, Energy Rev., 59, 1269
Kortlever, 2015, J. Phys. Chem. Lett., 6, 4073, 10.1021/acs.jpclett.5b01559
Albo, 2015, Green Chem., 17, 2304, 10.1039/C4GC02453B
Costentin, 2013, Chem. Soc. Rev., 42, 2423, 10.1039/C2CS35360A
Spinner, 2012, Catal. Sci. Technol., 2, 19, 10.1039/C1CY00314C
Finn, 2012, Chem. Commun., 48, 1392, 10.1039/C1CC15393E
Whipple, 2010, J. Phys. Chem. Lett., 1, 3451, 10.1021/jz1012627
Whipple, 2010, Electrochem. Solid ST, 13, B109, 10.1149/1.3456590
Delacourt, 2008, J. Electrochem. Soc., 155, B42, 10.1149/1.2801871
Tanaka, 2002, Coord. Chem. Rev., 226, 211, 10.1016/S0010-8545(01)00434-9
Gao, 2016, Nature, 529, 68, 10.1038/nature16455
Martín, 2015, Green Chem., 17, 5114, 10.1039/C5GC01893E
Li, 2017, J. Am. Chem. Soc., 139, 4290, 10.1021/jacs.7b00261
Kim, 2017, Appl. Catal. B Environ., 200, 265, 10.1016/j.apcatb.2016.07.008
Buelens, 2016, Science, 354, 449, 10.1126/science.aah7161
Yadav, 2012, J. Am. Chem. Soc., 134, 11455, 10.1021/ja3009902
Lee, 2011, J. Am. Chem. Soc., 133, 10066, 10.1021/ja204077e
Qiao, 2014, Chem. Soc. Rev., 43, 631, 10.1039/C3CS60323G
Albertus, 2013, Photosynth. Res., 117, 45, 10.1007/s11120-013-9844-z
Sakakura, 2007, Chem. Rev., 107, 2365, 10.1021/cr068357u
Armenise, 2013, Chem. Phys., 415, 269, 10.1016/j.chemphys.2013.01.034
Rothman, 1992, J. Quant. Spectrosc. Radiat. Transf., 48, 566
Stanbury, 2017, Electrochim. Acta, 240, 288, 10.1016/j.electacta.2017.04.080
Ishida, 2003, Nature, 421, 725, 10.1038/nature01380
Hamilton, 1957, J. Chem. Phys., 26, 345, 10.1063/1.1743296
Aresta, 2016, J. Catal., 343, 2, 10.1016/j.jcat.2016.04.003
M. North, Carbon dioxide utilisation-closing the carbon cycle, what is CO2? Thermodynamics, Basic Reactions and Physical Chemistry (Chapter 1), 2015, pp. 3–17.
Barin, 1993
Cao, 2001, J. Nat. Gas. Chem., 10, 24
Gao, 2016, Nature, 529, 68, 10.1038/nature16455
Shi, 2015, Chem. Soc. Rev., 44, 5981, 10.1039/C5CS00182J
Demars, 2016, Nat. Geosci., 9, 758, 10.1038/ngeo2807
Zhou, 2016, Nano Energy, 25, 128, 10.1016/j.nanoen.2016.04.049
Johnson, 2016, Essays Biochem., 60, 255, 10.1042/EBC20160016
Armor, 2007, Catal. Lett., 114, 115, 10.1007/s10562-007-9063-3
Lee, 2013, Appl. Catal. B Environ., 132–133, 445, 10.1016/j.apcatb.2012.12.024
Thauer, 2007, Science, 318, 1732, 10.1126/science.1152209
Castillo, 2008, J. Phys. Chem. B, 112, 10012, 10.1021/jp8025896
Bachmeier, 2013, J. Am. Chem. Soc., 135, 15026, 10.1021/ja4042675
Appel, 2013, Chem. Rev., 113, 6621, 10.1021/cr300463y
Jeoung, 2007, Science, 318, 1461, 10.1126/science.1148481
Woolerton, 2010, J. Am. Chem. Soc., 132, 2132, 10.1021/ja910091z
Chaudhary, 2012, Chem. Commun., 48, 58, 10.1039/C1CC16107E
Seefeldt, 1995, Biochemistry, 34, 5382, 10.1021/bi00016a009
Yang, 2012, Proc. Natl. Acad. Sci. USA, 109, 19644, 10.1073/pnas.1213159109
Zhang, 2013, Environ. Sci. Technol., 47, 13882, 10.1021/es4031744
Vinoba, 2013, Langmuir, 29, 15655, 10.1021/la403671y
Hwang, 2012, Green Chem., 14, 2216, 10.1039/c2gc35444f
Zhang, 2010, Chem. Eng. Sci., 65, 3199, 10.1016/j.ces.2010.02.010
Forsyth, 2013, Chem. Commun., 49, 3191, 10.1039/C2CC38225C
Glueck, 2009, Chem. Soc. Rev., 39, 313, 10.1039/B807875K
Aresta, 2013, J. CO2 Util., 3–4, 65, 10.1016/j.jcou.2013.08.001
Obert, 1999, J. Am. Chem. Soc., 121, 12192, 10.1021/ja991899r
Reda, 2008, Proc. Natl. Acad. Sci. USA, 105, 10654, 10.1073/pnas.0801290105
Sanna, 2012, Energy Environ. Sci., 5, 7781, 10.1039/c2ee03455g
Seifritz, 1990, Nature, 345, 486, 10.1038/345486b0
Chu, 2013, RSC Adv., 3, 21722, 10.1039/c3ra44007a
Ma, 2013, Energy Fuel, 27, 4190, 10.1021/ef400201a
Balucan, 2013, Environ. Sci. Technol., 47, 182, 10.1021/es303566z
Naraharisetti, 2017, ChemPhysChem, 18, 1, 10.1002/cphc.201700565
R. Zevenhoven, J. Fagerlund. Developments and innovation in carbon dioxide (CO2) capture and storage technology, Mineralisation of Carbon Dioxide (CO2) (Chapter 16), 2010, pp. 433–462.
Olajire, 2013, J. Pet. Sci. Eng., 109, 364, 10.1016/j.petrol.2013.03.013
Velts, 2014, Energy Procedia, 63, 5904, 10.1016/j.egypro.2014.11.625
K.S. Lackner, D.P. Butt, C.H. Wendt, Magnesite disposal of carbon dioxide, in: Proceedings of the 22nd International Technical Conference on Coal Utilization & Fuel Systems, Los Alamos National Lab, NM, United States, 1997.
Koivisto, 2016, Hydrometallurgy, 166, 222, 10.1016/j.hydromet.2016.07.005
Erlund, 2016, Hydrometallurgy, 166, 229, 10.1016/j.hydromet.2016.07.004
Kakizawa, 2001, Energy, 26, 341, 10.1016/S0360-5442(01)00005-6
Xie, 2015, Environ. Earth Sci., 73, 6881, 10.1007/s12665-015-4401-z
Sun, 2016, Environ. Earth Sci., 75, 1335, 10.1007/s12665-016-6147-7
Stolaroff, 2005, Energy Convers. Manag., 46, 687, 10.1016/j.enconman.2004.05.009
Huntzinger, 2009, Environ. Sci. Technol., 43, 1986, 10.1021/es802910z
Bang, 2016, Energies, 9, 996, 10.3390/en9120996
Kelly, 2011, Int. J. Greenh. Gas. Control, 5, 1587, 10.1016/j.ijggc.2011.09.005
Verduyn, 2011, Energy Procedia, 4, 2885, 10.1016/j.egypro.2011.02.195
Xie, 2015, Environ. Earth Sci., 73, 7053, 10.1007/s12665-015-4404-9
Lackner, 2002, Energy Environ., 27, 193
Xie, 2015, Environ. Earth Sci., 74, 6481, 10.1007/s12665-015-4731-x
Xie, 2014, Sci. China Technol. Sci., 57, 2335, 10.1007/s11431-014-5727-6
Inoue, 1979, Nature, 277, 637, 10.1038/277637a0
Fujita, 1999, Coord. Chem. Rev., 185–186, 373, 10.1016/S0010-8545(99)00023-5
Li, 2017, Nano Lett., 4, 2490, 10.1021/acs.nanolett.7b00184
Yu, 2017, Nat. Energy, 2, 17045, 10.1038/nenergy.2017.45
Y. Yan, J. Gu, E.L. Zeitler, A.B. Bocarsly, Carbon dioxide utilization-closing the carbon cycle, Photoelectrocatalytic Reduction of Carbon Dioxide (Chapter 12), 2015, pp. 211–233.
Liang, 2011, Nano Lett., 11, 2865, 10.1021/nl2012906
Indrakanti, 2009, Energy Environ. Sci., 2, 745, 10.1039/b822176f
Pougin, 2016, Phys. Chem. Chem. Phys., 16, 10809, 10.1039/C5CP07148H
Wu, 2016, Chem. Commun., 28, 5027, 10.1039/C6CC00772D
Sasan, 2015, Nanoscale, 32, 13369, 10.1039/C5NR02974K
Wang, 2014, Nano Energy, 9, 50, 10.1016/j.nanoen.2014.06.027
Xu, 2015, Chem. Commun., 51, 7950, 10.1039/C5CC01087J
Zhao, 2017, J. Mater., 3, 17
Low, 2017, Appl. Surf. Sci., 392, 658, 10.1016/j.apsusc.2016.09.093
Abdellah, 2017, J. Am. Chem. Soc., 139, 1226, 10.1021/jacs.6b11308
Yu, 2014, J. Mater. Chem., A2, 3407, 10.1039/c3ta14493c
Li, 2016, Nano Energy, 27, 320, 10.1016/j.nanoen.2016.06.056
Yeh, 2011, J. Phys. Chem. C, 115, 22587, 10.1021/jp204856c
Yeh, 2010, Adv. Funct. Mater., 20, 2255, 10.1002/adfm.201000274
Iwase, 2016, J. Am. Chem. Soc., 138, 10260, 10.1021/jacs.6b05304
Hsu, 2013, Nanoscale, 5, 262, 10.1039/C2NR31718D
Shown, 2014, Nano Lett., 14, 6097, 10.1021/nl503609v
Kumar, 2014, J. Mater. Chem. A, 2, 11246, 10.1039/c4ta01494d
Doherty, 2010, Coord. Chem. Rev., 254, 2472, 10.1016/j.ccr.2009.12.013
Sato, 2010, Angew. Chem. Int. Ed., 122, 5227, 10.1002/ange.201000613
Halmann, 1978, Nature, 275, 115, 10.1038/275115a0
Kaneco, 2006, Appl. Catal. B Environ., 64, 139, 10.1016/j.apcatb.2005.11.012
Barton, 2008, J. Am. Chem. Soc., 130, 6342, 10.1021/ja0776327
Zhao, 2014, J. Mater. Chem., A2, 15228, 10.1039/C4TA02250E
Sahara, 2016, J. Am. Chem. Soc., 138, 14152, 10.1021/jacs.6b09212
Song, 2017, Adv. Energy Mater., 7, 1601103, 10.1002/aenm.201601103
Kong, 2016, Nano Lett., 16, 5675, 10.1021/acs.nanolett.6b02321
Valverde, 2017, Phys. Chem. Chem. Phys., 19, 7587, 10.1039/C7CP00260B
Rao, 2016, J. Solid State Chem., 242, 107, 10.1016/j.jssc.2015.12.018
Zhang, 2016, Ind. Eng. Chem. Res., 55, 534, 10.1021/acs.iecr.5b02407
Scheffe, 2014, Mater. Today, 17, 341, 10.1016/j.mattod.2014.04.025
Sabatier, 1902, Hebd. Seances Acad. Sci., 134, 514
M.K. Gnanamani, G. Jacobs, V.R.R. Pendtala, W. Ma, B.H. Davis, Green carbon dioxide-advances in CO2 utilization, Hydrogenation of Carbon Dioxide to Liquid Fuels (Chapter 4), 2014, pp. 99–118.
Fidalgo, 2011, Chin. J. Catal., 32, 207, 10.1016/S1872-2067(10)60166-0
An, 2017, J. Am. Chem. Soc., 139, 3834, 10.1021/jacs.7b00058
Larmier, 2017, Angew. Chem. Int. Ed., 56, 2318, 10.1002/anie.201610166
Li, 2016, J. Catal., 343, 157, 10.1016/j.jcat.2016.03.020
Liao, 2016, Green Chem., 19, 270, 10.1039/C6GC02366E
Martin, 2016, Angew. Chem. Int. Ed., 55, 6261, 10.1002/anie.201600943
Rungtaweevoranit, 2016, Nano Lett., 16, 7645, 10.1021/acs.nanolett.6b03637
Lei, 2015, Fuel, 154, 161, 10.1016/j.fuel.2015.03.052
Wang, 2011, Chem. Soc. Rev., 40, 3703, 10.1039/c1cs15008a
Angelo, 2015, C. R. Chim., 18, 250, 10.1016/j.crci.2015.01.001
Gao, 2013, Appl. Catal. A: Gen., 468, 442, 10.1016/j.apcata.2013.09.026
Arena, 2007, J. Catal., 249, 185, 10.1016/j.jcat.2007.04.003
Kunkes, 2015, J. Catal., 328, 43, 10.1016/j.jcat.2014.12.016
Behrens, 2012, Science, 336, 893, 10.1126/science.1219831
Toyir, 2001, Appl. Catal. B Environ., 29, 207, 10.1016/S0926-3373(00)00205-8
Toyir, 2001, Appl. Catal. B Environ., 34, 255, 10.1016/S0926-3373(01)00203-X
Liu, 2001, Appl. Catal. A: Gen., 218, 113, 10.1016/S0926-860X(01)00625-1
Liu, 2005, Appl. Catal. A: Gen., 279, 241, 10.1016/j.apcata.2004.10.040
Słoczynski, 2006, Appl. Catal. A: Gen., 310, 127, 10.1016/j.apcata.2006.05.035
Słoczyński, 2004, Appl. Catal. A: Gen., 278, 11, 10.1016/j.apcata.2004.09.014
Guo, 2010, J. Catal., 271, 178, 10.1016/j.jcat.2010.01.009
An, 2007, Catal. Lett., 118, 264, 10.1007/s10562-007-9182-x
Liang, 2009, Appl. Catal. B Environ., 88, 315, 10.1016/j.apcatb.2008.11.018
Kakumoto, 1995, Energ. Convers. Manag., 36, 661, 10.1016/0196-8904(95)00092-R
Federsel, 2010, Angew. Chem. Int. Ed., 49, 6254, 10.1002/anie.201000533
Farlow, 1935, J. Am. Chem. Soc., 57, 2222, 10.1021/ja01314a054
Liu, 2016, Tetrahedron Lett., 57, 4845, 10.1016/j.tetlet.2016.09.059
Peng, 2012, Surf. Sci., 606, 1050, 10.1016/j.susc.2012.02.027
Hao, 2011, Catal. Today, 160, 184, 10.1016/j.cattod.2010.05.034
Federsel, 2010, Angew. Chem. Int. Ed., 49, 9777, 10.1002/anie.201004263
Gunasekar, 2016, Inorg. Chem., 3, 882
Peng, 2012, J. Phys. Chem. C, 116, 3001, 10.1021/jp210408x
Musashi, 2002, J. Am. Chem. Soc., 124, 7588, 10.1021/ja020063c
Rohmann, 2016, Angew. Chem. Int. Ed., 128, 9112, 10.1002/ange.201603878
Upadhyay, 2016, Catal. Lett., 146, 12, 10.1007/s10562-015-1654-9
Tai, 2002, Inorg. Chem., 41, 1606, 10.1021/ic010866l
Urakawa, 2007, Chem. Eur. J., 13, 3886, 10.1002/chem.200601339
Urakawa, 2007, Chem. Eur. J., 13, 6828, 10.1002/chem.200700254
Tanaka, 2009, J. Am. Chem. Soc., 131, 14168, 10.1021/ja903574e
Zhang, 2009, ChemSusChem, 2, 234, 10.1002/cssc.200800252
Zhang, 2008, Angew. Chem. Int. Ed., 47, 1127, 10.1002/anie.200704487
Upadhyay, 2016, RSC Adv., 6, 42297, 10.1039/C6RA03660K
Srivastava, 2014, Catal. Lett., 144, 1745, 10.1007/s10562-014-1321-6
Fischer, 1928, Brennst. Chem., 9, 39
Jafarbegloo, 2015, Int. J. Hydrog. Energy, 40, 2445, 10.1016/j.ijhydene.2014.12.103
Kathiraser, 2015, Chem. Eng. J., 278, 62, 10.1016/j.cej.2014.11.143
Barroso Quiroga, 2007, Ind. Eng. Chem. Res., 46, 5265, 10.1021/ie061645w
Avetisov, 2010, J. Mol. Catal. A Chem., 315, 155, 10.1016/j.molcata.2009.06.013
Yuan, 2016, ACS Catal., 6, 4330, 10.1021/acscatal.6b00357
Menegazzo, 2012, Appl. Catal. A: Gen., 439–440, 80, 10.1016/j.apcata.2012.06.041
B. Hu, S.L. Suib, Green carbon dioxide-advances in CO2 utilization, Synthesis of Useful Compounds from CO2 (Chapter 3), 2014, pp. 51–97.
Ni, 2016, Carbon Balance Manag., 11, 3, 10.1186/s13021-016-0044-y
Zeng, 2016, Int. J. Hydrog. Energy, 41, 9140, 10.1016/j.ijhydene.2015.12.206
Alves, 2015, Mater. Renew. Sustain. Energy, 4, 2, 10.1007/s40243-015-0042-0
Kumar, 2017, Angew. Chem. Int. Ed., 56, 3645, 10.1002/anie.201612194
Li, 2017, Nano Energy, 31, 270, 10.1016/j.nanoen.2016.11.004
Fang, 2017, J. Am. Chem. Soc., 139, 3399, 10.1021/jacs.6b11023
Singh, 2016, J. Am. Chem. Soc., 138, 13006, 10.1021/jacs.6b07612
Ma, 2016, Angew. Chem. Int. Ed., 55, 6680, 10.1002/anie.201601282
Min, 2016, Nano Energy, 27, 121, 10.1016/j.nanoen.2016.06.043
Yin, 2016, Nano Energy, 27, 35, 10.1016/j.nanoen.2016.06.035
Qiao, 2014, Electrochem. Commun., 38, 8, 10.1016/j.elecom.2013.10.023
M. Fan, S. Fu, Y. Liu, C. Ma, J. Qiao, Proceedings of the Electrochemical Conference on Energy & the Environment (ECEE), March 13–16, 2014.
Fan, 2014, RSC Adv., 4, 44583, 10.1039/C4RA09442E
Machunda, 2011, Curr. Appl. Phys., 11, 986, 10.1016/j.cap.2011.01.003
Huang, 2017, Angew. Chem. Int. Ed., 56, 3594, 10.1002/anie.201612617
Chen, 2012, J. Am. Chem. Soc., 134, 19969, 10.1021/ja309317u
Wu, 2016, Nano Energy, 27, 225, 10.1016/j.nanoen.2016.06.028
Bonin, 2017, Coord. Chem. Rev., 334, 184, 10.1016/j.ccr.2016.09.005
Rosen, 2011, Science, 334, 643, 10.1126/science.1209786
Peterson, 2010, Energy Environ. Sci., 3, 1311, 10.1039/c0ee00071j
Barton Cole, 2010, J. Am. Chem. Soc., 132, 11539, 10.1021/ja1023496
Irvine, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2015.14
Ebbesen, 2014, Chem. Rev., 114, 10697, 10.1021/cr5000865
Gao, 2016, Energy Environ. Sci., 9, 1602, 10.1039/C5EE03858H
Zhu, 2015, Angew. Chem. Int. Ed., 54, 3897, 10.1002/anie.201408998
Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858
Laguna-Bercero, 2010, Chem. Mater., 22, 1134, 10.1021/cm902425k
Bugaris, 2014, J. Mater. Chem. A, 2, 4045, 10.1039/C3TA14913G
Suthirakun, 2014, J. Am. Chem. Soc., 136, 8374, 10.1021/ja502629j
Nguyen, 2015, Chem. Ing. Tech., 87, 354, 10.1002/cite.201400090
Hansen, 2015, Faraday Discuss., 182, 9, 10.1039/C5FD90071A
Jensen, 2015, Energy Environ. Sci., 8, 2471, 10.1039/C5EE01485A
Nguyen, 2013, Electrochem. Soc. Interface, 55
Mahato, 2015, Prog. Mater. Sci., 72, 141, 10.1016/j.pmatsci.2015.01.001
Graves, 2014, Nat. Mater., 14, 239, 10.1038/nmat4165
Wachsman, 2011, Science, 334, 935, 10.1126/science.1204090
Wang, 2016, J. Power Sources, 305, 240, 10.1016/j.jpowsour.2015.11.097
Chen, 2014, Energy Environ. Sci., 7, 4018, 10.1039/C4EE02786H
Stoots, 2009, Int. J. Hydrog. Energy, 34, 4208, 10.1016/j.ijhydene.2008.08.029
Menon, 2015, J. Power Sources, 274, 768, 10.1016/j.jpowsour.2014.09.158
Otto, 2015, Energy Environ. Sci., 8, 3283, 10.1039/C5EE02591E
Kiss, 2016, Chem. Eng. J., 284, 260, 10.1016/j.cej.2015.08.101
Kourkoumpas, 2016, Int. J. Hydrog. Energy, 41, 16674, 10.1016/j.ijhydene.2016.07.100
Wiesberg, 2016, Energy Convers. Manag., 125, 320, 10.1016/j.enconman.2016.04.041
Pérez-Fortes, 2016, Appl. Energy, 161, 718, 10.1016/j.apenergy.2015.07.067
Pérez-Fortes, 2014, Energy Procedia, 63, 7968, 10.1016/j.egypro.2014.11.834
Bose, 2015, Clean Technol. Environ. Policy, 17, 1271, 10.1007/s10098-015-0960-7
Kuenen, 2016, Comput. Chem. Eng., 86, 136, 10.1016/j.compchemeng.2015.12.025
Pérez-Fortes, 2016, Int. J. Hydrog. Energy, 41, 16444, 10.1016/j.ijhydene.2016.05.199
Fu, 2010, Energy Environ. Sci., 3, 1365, 10.1039/c0ee90020f
Giglio, 2015, J. Energy Storage, 2, 64, 10.1016/j.est.2015.06.004
Ma, 2015, J. Mater. Chem. A, 3, 207, 10.1039/C4TA04993D
Chen, 2013, Adv. Energy Mater., 3, 1221, 10.1002/aenm.201300025
Han, 2012, Energy Environ. Sci., 5, 8598, 10.1039/c2ee03592h
Sase, 2008, J. Electrochem. Soc., 155, B793, 10.1149/1.2928612