Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies

Nano Energy - Tập 40 - Trang 512-539 - 2017
Yun Zheng1, Wenqiang Zhang1, Yifeng Li1, Jing Chen1, Bo Yu1, Jianchen Wang1, Lei Zhang2,3, Jiujun Zhang2,3
1Institute of Nuclear and New Energy Technology (INET), Collaborative Innovation Center of Advanced Nuclear Energy Technology, Tsinghua University, 30 Shuang Qing Road, Beijing 100084, PR China
2NRC Energy, Mining & Environment, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver BC, Canada V6T 1W5
3College of Sciences & Institute for Sustainable Energy, Shanghai University, Shanghai 200444, PR China

Tài liệu tham khảo

Zheng, 2017, Chem. Soc. Rev., 46, 1427, 10.1039/C6CS00403B Liu, 2016, Science, 352, 1210, 10.1126/science.aaf5039 Banerjee, 2016, Nature, 531, 215, 10.1038/nature17185 Li, 2014, Nature, 508, 504, 10.1038/nature13249 Aresta, 2013, Philos. Trans. A Math. Phys. Eng. Sci., 371, 20120111, 10.1098/rsta.2012.0111 Aresta, 2014, Chem. Rev., 114, 1709, 10.1021/cr4002758 Schwander, 2016, Science, 354, 900, 10.1126/science.aah5237 Wagner, 2016, Science, 354, 114, 10.1126/science.aaf9284 Lee, 2016, Adv. Energy Mater., 6, 1502207, 10.1002/aenm.201502207 Beller, 2014, Angew. Chem. Int. Ed., 53, 4527, 10.1002/anie.201402963 Schuchmann, 2013, Science, 342, 1382, 10.1126/science.1244758 Ji, 2017, Fuel Process. Technol., 156, 429, 10.1016/j.fuproc.2016.10.004 Chang, 2017, Chem. Eng., 5, 1659 Yang, 2016, Physica A, 464, 191, 10.1016/j.physa.2016.07.074 Yuen, 2016, Environ. Sci. Pollut. Res., 23, 22309, 10.1007/s11356-016-6512-9 Helwani, 2016, Energy Sources Part A: Recovery Util. Environ. Eff., 38, 606, 10.1080/15567036.2013.813991 Xie, 2016, Environ. Earth Sci., 75, 615, 10.1007/s12665-016-5352-8 Bhardwaj, 2016, Ind. Eng. Chem. Res., 55, 2946, 10.1021/acs.iecr.5b04925 Yang, 2016, Nanoscale Horiz., 1, 185, 10.1039/C5NH00113G Li, 2016, ACS Catal., 6, 7485, 10.1021/acscatal.6b02089 Ong, 2015, Chem. Commun., 51, 858, 10.1039/C4CC08996K Low, 2015, J. Phys. Chem. Lett., 6, 4244, 10.1021/acs.jpclett.5b01610 Kumar, 2015, Green Chem., 17, 1605, 10.1039/C4GC01400F Tu, 2014, Adv. Mater., 26, 4607, 10.1002/adma.201400087 Ong, 2014, Nano Res., 7, 1528, 10.1007/s12274-014-0514-z Atsonios, 2016, Int. J. Hydrog. Energ., 41, 792, 10.1016/j.ijhydene.2015.12.001 Li, 2015, Nanoscale, 7, 8663, 10.1039/C5NR00092K Pakhare, 2014, Chem. Soc. Rev., 43, 7813, 10.1039/C3CS60395D Grabow, 2011, ACS Catal., 1, 365, 10.1021/cs200055d Ashcroft, 1991, Nature, 352, 225, 10.1038/352225a0 Ganesh, 2016, Energy Rev., 59, 1269 Kortlever, 2015, J. Phys. Chem. Lett., 6, 4073, 10.1021/acs.jpclett.5b01559 Albo, 2015, Green Chem., 17, 2304, 10.1039/C4GC02453B Costentin, 2013, Chem. Soc. Rev., 42, 2423, 10.1039/C2CS35360A Spinner, 2012, Catal. Sci. Technol., 2, 19, 10.1039/C1CY00314C Finn, 2012, Chem. Commun., 48, 1392, 10.1039/C1CC15393E Whipple, 2010, J. Phys. Chem. Lett., 1, 3451, 10.1021/jz1012627 Whipple, 2010, Electrochem. Solid ST, 13, B109, 10.1149/1.3456590 Delacourt, 2008, J. Electrochem. Soc., 155, B42, 10.1149/1.2801871 Tanaka, 2002, Coord. Chem. Rev., 226, 211, 10.1016/S0010-8545(01)00434-9 Gao, 2016, Nature, 529, 68, 10.1038/nature16455 Martín, 2015, Green Chem., 17, 5114, 10.1039/C5GC01893E Li, 2017, J. Am. Chem. Soc., 139, 4290, 10.1021/jacs.7b00261 Kim, 2017, Appl. Catal. B Environ., 200, 265, 10.1016/j.apcatb.2016.07.008 Buelens, 2016, Science, 354, 449, 10.1126/science.aah7161 Yadav, 2012, J. Am. Chem. Soc., 134, 11455, 10.1021/ja3009902 Lee, 2011, J. Am. Chem. Soc., 133, 10066, 10.1021/ja204077e Qiao, 2014, Chem. Soc. Rev., 43, 631, 10.1039/C3CS60323G Albertus, 2013, Photosynth. Res., 117, 45, 10.1007/s11120-013-9844-z Sakakura, 2007, Chem. Rev., 107, 2365, 10.1021/cr068357u Armenise, 2013, Chem. Phys., 415, 269, 10.1016/j.chemphys.2013.01.034 Rothman, 1992, J. Quant. Spectrosc. Radiat. Transf., 48, 566 Stanbury, 2017, Electrochim. Acta, 240, 288, 10.1016/j.electacta.2017.04.080 Ishida, 2003, Nature, 421, 725, 10.1038/nature01380 Hamilton, 1957, J. Chem. Phys., 26, 345, 10.1063/1.1743296 Aresta, 2016, J. Catal., 343, 2, 10.1016/j.jcat.2016.04.003 M. North, Carbon dioxide utilisation-closing the carbon cycle, what is CO2? Thermodynamics, Basic Reactions and Physical Chemistry (Chapter 1), 2015, pp. 3–17. Barin, 1993 Cao, 2001, J. Nat. Gas. Chem., 10, 24 Gao, 2016, Nature, 529, 68, 10.1038/nature16455 Shi, 2015, Chem. Soc. Rev., 44, 5981, 10.1039/C5CS00182J Demars, 2016, Nat. Geosci., 9, 758, 10.1038/ngeo2807 Zhou, 2016, Nano Energy, 25, 128, 10.1016/j.nanoen.2016.04.049 Johnson, 2016, Essays Biochem., 60, 255, 10.1042/EBC20160016 Armor, 2007, Catal. Lett., 114, 115, 10.1007/s10562-007-9063-3 Lee, 2013, Appl. Catal. B Environ., 132–133, 445, 10.1016/j.apcatb.2012.12.024 Thauer, 2007, Science, 318, 1732, 10.1126/science.1152209 Castillo, 2008, J. Phys. Chem. B, 112, 10012, 10.1021/jp8025896 Bachmeier, 2013, J. Am. Chem. Soc., 135, 15026, 10.1021/ja4042675 Appel, 2013, Chem. Rev., 113, 6621, 10.1021/cr300463y Jeoung, 2007, Science, 318, 1461, 10.1126/science.1148481 Woolerton, 2010, J. Am. Chem. Soc., 132, 2132, 10.1021/ja910091z Chaudhary, 2012, Chem. Commun., 48, 58, 10.1039/C1CC16107E Seefeldt, 1995, Biochemistry, 34, 5382, 10.1021/bi00016a009 Yang, 2012, Proc. Natl. Acad. Sci. USA, 109, 19644, 10.1073/pnas.1213159109 Zhang, 2013, Environ. Sci. Technol., 47, 13882, 10.1021/es4031744 Vinoba, 2013, Langmuir, 29, 15655, 10.1021/la403671y Hwang, 2012, Green Chem., 14, 2216, 10.1039/c2gc35444f Zhang, 2010, Chem. Eng. Sci., 65, 3199, 10.1016/j.ces.2010.02.010 Forsyth, 2013, Chem. Commun., 49, 3191, 10.1039/C2CC38225C Glueck, 2009, Chem. Soc. Rev., 39, 313, 10.1039/B807875K Aresta, 2013, J. CO2 Util., 3–4, 65, 10.1016/j.jcou.2013.08.001 Obert, 1999, J. Am. Chem. Soc., 121, 12192, 10.1021/ja991899r Reda, 2008, Proc. Natl. Acad. Sci. USA, 105, 10654, 10.1073/pnas.0801290105 Sanna, 2012, Energy Environ. Sci., 5, 7781, 10.1039/c2ee03455g Seifritz, 1990, Nature, 345, 486, 10.1038/345486b0 Chu, 2013, RSC Adv., 3, 21722, 10.1039/c3ra44007a Ma, 2013, Energy Fuel, 27, 4190, 10.1021/ef400201a Balucan, 2013, Environ. Sci. Technol., 47, 182, 10.1021/es303566z Naraharisetti, 2017, ChemPhysChem, 18, 1, 10.1002/cphc.201700565 R. Zevenhoven, J. Fagerlund. Developments and innovation in carbon dioxide (CO2) capture and storage technology, Mineralisation of Carbon Dioxide (CO2) (Chapter 16), 2010, pp. 433–462. Olajire, 2013, J. Pet. Sci. Eng., 109, 364, 10.1016/j.petrol.2013.03.013 Velts, 2014, Energy Procedia, 63, 5904, 10.1016/j.egypro.2014.11.625 K.S. Lackner, D.P. Butt, C.H. Wendt, Magnesite disposal of carbon dioxide, in: Proceedings of the 22nd International Technical Conference on Coal Utilization & Fuel Systems, Los Alamos National Lab, NM, United States, 1997. Koivisto, 2016, Hydrometallurgy, 166, 222, 10.1016/j.hydromet.2016.07.005 Erlund, 2016, Hydrometallurgy, 166, 229, 10.1016/j.hydromet.2016.07.004 Kakizawa, 2001, Energy, 26, 341, 10.1016/S0360-5442(01)00005-6 Xie, 2015, Environ. Earth Sci., 73, 6881, 10.1007/s12665-015-4401-z Sun, 2016, Environ. Earth Sci., 75, 1335, 10.1007/s12665-016-6147-7 Stolaroff, 2005, Energy Convers. Manag., 46, 687, 10.1016/j.enconman.2004.05.009 Huntzinger, 2009, Environ. Sci. Technol., 43, 1986, 10.1021/es802910z Bang, 2016, Energies, 9, 996, 10.3390/en9120996 Kelly, 2011, Int. J. Greenh. Gas. Control, 5, 1587, 10.1016/j.ijggc.2011.09.005 Verduyn, 2011, Energy Procedia, 4, 2885, 10.1016/j.egypro.2011.02.195 Xie, 2015, Environ. Earth Sci., 73, 7053, 10.1007/s12665-015-4404-9 Lackner, 2002, Energy Environ., 27, 193 Xie, 2015, Environ. Earth Sci., 74, 6481, 10.1007/s12665-015-4731-x Xie, 2014, Sci. China Technol. Sci., 57, 2335, 10.1007/s11431-014-5727-6 Inoue, 1979, Nature, 277, 637, 10.1038/277637a0 Fujita, 1999, Coord. Chem. Rev., 185–186, 373, 10.1016/S0010-8545(99)00023-5 Li, 2017, Nano Lett., 4, 2490, 10.1021/acs.nanolett.7b00184 Yu, 2017, Nat. Energy, 2, 17045, 10.1038/nenergy.2017.45 Y. Yan, J. Gu, E.L. Zeitler, A.B. Bocarsly, Carbon dioxide utilization-closing the carbon cycle, Photoelectrocatalytic Reduction of Carbon Dioxide (Chapter 12), 2015, pp. 211–233. Liang, 2011, Nano Lett., 11, 2865, 10.1021/nl2012906 Indrakanti, 2009, Energy Environ. Sci., 2, 745, 10.1039/b822176f Pougin, 2016, Phys. Chem. Chem. Phys., 16, 10809, 10.1039/C5CP07148H Wu, 2016, Chem. Commun., 28, 5027, 10.1039/C6CC00772D Sasan, 2015, Nanoscale, 32, 13369, 10.1039/C5NR02974K Wang, 2014, Nano Energy, 9, 50, 10.1016/j.nanoen.2014.06.027 Xu, 2015, Chem. Commun., 51, 7950, 10.1039/C5CC01087J Zhao, 2017, J. Mater., 3, 17 Low, 2017, Appl. Surf. Sci., 392, 658, 10.1016/j.apsusc.2016.09.093 Abdellah, 2017, J. Am. Chem. Soc., 139, 1226, 10.1021/jacs.6b11308 Yu, 2014, J. Mater. Chem., A2, 3407, 10.1039/c3ta14493c Li, 2016, Nano Energy, 27, 320, 10.1016/j.nanoen.2016.06.056 Yeh, 2011, J. Phys. Chem. C, 115, 22587, 10.1021/jp204856c Yeh, 2010, Adv. Funct. Mater., 20, 2255, 10.1002/adfm.201000274 Iwase, 2016, J. Am. Chem. Soc., 138, 10260, 10.1021/jacs.6b05304 Hsu, 2013, Nanoscale, 5, 262, 10.1039/C2NR31718D Shown, 2014, Nano Lett., 14, 6097, 10.1021/nl503609v Kumar, 2014, J. Mater. Chem. A, 2, 11246, 10.1039/c4ta01494d Doherty, 2010, Coord. Chem. Rev., 254, 2472, 10.1016/j.ccr.2009.12.013 Sato, 2010, Angew. Chem. Int. Ed., 122, 5227, 10.1002/ange.201000613 Halmann, 1978, Nature, 275, 115, 10.1038/275115a0 Kaneco, 2006, Appl. Catal. B Environ., 64, 139, 10.1016/j.apcatb.2005.11.012 Barton, 2008, J. Am. Chem. Soc., 130, 6342, 10.1021/ja0776327 Zhao, 2014, J. Mater. Chem., A2, 15228, 10.1039/C4TA02250E Sahara, 2016, J. Am. Chem. Soc., 138, 14152, 10.1021/jacs.6b09212 Song, 2017, Adv. Energy Mater., 7, 1601103, 10.1002/aenm.201601103 Kong, 2016, Nano Lett., 16, 5675, 10.1021/acs.nanolett.6b02321 Valverde, 2017, Phys. Chem. Chem. Phys., 19, 7587, 10.1039/C7CP00260B Rao, 2016, J. Solid State Chem., 242, 107, 10.1016/j.jssc.2015.12.018 Zhang, 2016, Ind. Eng. Chem. Res., 55, 534, 10.1021/acs.iecr.5b02407 Scheffe, 2014, Mater. Today, 17, 341, 10.1016/j.mattod.2014.04.025 Sabatier, 1902, Hebd. Seances Acad. Sci., 134, 514 M.K. Gnanamani, G. Jacobs, V.R.R. Pendtala, W. Ma, B.H. Davis, Green carbon dioxide-advances in CO2 utilization, Hydrogenation of Carbon Dioxide to Liquid Fuels (Chapter 4), 2014, pp. 99–118. Fidalgo, 2011, Chin. J. Catal., 32, 207, 10.1016/S1872-2067(10)60166-0 An, 2017, J. Am. Chem. Soc., 139, 3834, 10.1021/jacs.7b00058 Larmier, 2017, Angew. Chem. Int. Ed., 56, 2318, 10.1002/anie.201610166 Li, 2016, J. Catal., 343, 157, 10.1016/j.jcat.2016.03.020 Liao, 2016, Green Chem., 19, 270, 10.1039/C6GC02366E Martin, 2016, Angew. Chem. Int. Ed., 55, 6261, 10.1002/anie.201600943 Rungtaweevoranit, 2016, Nano Lett., 16, 7645, 10.1021/acs.nanolett.6b03637 Lei, 2015, Fuel, 154, 161, 10.1016/j.fuel.2015.03.052 Wang, 2011, Chem. Soc. Rev., 40, 3703, 10.1039/c1cs15008a Angelo, 2015, C. R. Chim., 18, 250, 10.1016/j.crci.2015.01.001 Gao, 2013, Appl. Catal. A: Gen., 468, 442, 10.1016/j.apcata.2013.09.026 Arena, 2007, J. Catal., 249, 185, 10.1016/j.jcat.2007.04.003 Kunkes, 2015, J. Catal., 328, 43, 10.1016/j.jcat.2014.12.016 Behrens, 2012, Science, 336, 893, 10.1126/science.1219831 Toyir, 2001, Appl. Catal. B Environ., 29, 207, 10.1016/S0926-3373(00)00205-8 Toyir, 2001, Appl. Catal. B Environ., 34, 255, 10.1016/S0926-3373(01)00203-X Liu, 2001, Appl. Catal. A: Gen., 218, 113, 10.1016/S0926-860X(01)00625-1 Liu, 2005, Appl. Catal. A: Gen., 279, 241, 10.1016/j.apcata.2004.10.040 Słoczynski, 2006, Appl. Catal. A: Gen., 310, 127, 10.1016/j.apcata.2006.05.035 Słoczyński, 2004, Appl. Catal. A: Gen., 278, 11, 10.1016/j.apcata.2004.09.014 Guo, 2010, J. Catal., 271, 178, 10.1016/j.jcat.2010.01.009 An, 2007, Catal. Lett., 118, 264, 10.1007/s10562-007-9182-x Liang, 2009, Appl. Catal. B Environ., 88, 315, 10.1016/j.apcatb.2008.11.018 Kakumoto, 1995, Energ. Convers. Manag., 36, 661, 10.1016/0196-8904(95)00092-R Federsel, 2010, Angew. Chem. Int. Ed., 49, 6254, 10.1002/anie.201000533 Farlow, 1935, J. Am. Chem. Soc., 57, 2222, 10.1021/ja01314a054 Liu, 2016, Tetrahedron Lett., 57, 4845, 10.1016/j.tetlet.2016.09.059 Peng, 2012, Surf. Sci., 606, 1050, 10.1016/j.susc.2012.02.027 Hao, 2011, Catal. Today, 160, 184, 10.1016/j.cattod.2010.05.034 Federsel, 2010, Angew. Chem. Int. Ed., 49, 9777, 10.1002/anie.201004263 Gunasekar, 2016, Inorg. Chem., 3, 882 Peng, 2012, J. Phys. Chem. C, 116, 3001, 10.1021/jp210408x Musashi, 2002, J. Am. Chem. Soc., 124, 7588, 10.1021/ja020063c Rohmann, 2016, Angew. Chem. Int. Ed., 128, 9112, 10.1002/ange.201603878 Upadhyay, 2016, Catal. Lett., 146, 12, 10.1007/s10562-015-1654-9 Tai, 2002, Inorg. Chem., 41, 1606, 10.1021/ic010866l Urakawa, 2007, Chem. Eur. J., 13, 3886, 10.1002/chem.200601339 Urakawa, 2007, Chem. Eur. J., 13, 6828, 10.1002/chem.200700254 Tanaka, 2009, J. Am. Chem. Soc., 131, 14168, 10.1021/ja903574e Zhang, 2009, ChemSusChem, 2, 234, 10.1002/cssc.200800252 Zhang, 2008, Angew. Chem. Int. Ed., 47, 1127, 10.1002/anie.200704487 Upadhyay, 2016, RSC Adv., 6, 42297, 10.1039/C6RA03660K Srivastava, 2014, Catal. Lett., 144, 1745, 10.1007/s10562-014-1321-6 Fischer, 1928, Brennst. Chem., 9, 39 Jafarbegloo, 2015, Int. J. Hydrog. Energy, 40, 2445, 10.1016/j.ijhydene.2014.12.103 Kathiraser, 2015, Chem. Eng. J., 278, 62, 10.1016/j.cej.2014.11.143 Barroso Quiroga, 2007, Ind. Eng. Chem. Res., 46, 5265, 10.1021/ie061645w Avetisov, 2010, J. Mol. Catal. A Chem., 315, 155, 10.1016/j.molcata.2009.06.013 Yuan, 2016, ACS Catal., 6, 4330, 10.1021/acscatal.6b00357 Menegazzo, 2012, Appl. Catal. A: Gen., 439–440, 80, 10.1016/j.apcata.2012.06.041 B. Hu, S.L. Suib, Green carbon dioxide-advances in CO2 utilization, Synthesis of Useful Compounds from CO2 (Chapter 3), 2014, pp. 51–97. Ni, 2016, Carbon Balance Manag., 11, 3, 10.1186/s13021-016-0044-y Zeng, 2016, Int. J. Hydrog. Energy, 41, 9140, 10.1016/j.ijhydene.2015.12.206 Alves, 2015, Mater. Renew. Sustain. Energy, 4, 2, 10.1007/s40243-015-0042-0 Kumar, 2017, Angew. Chem. Int. Ed., 56, 3645, 10.1002/anie.201612194 Li, 2017, Nano Energy, 31, 270, 10.1016/j.nanoen.2016.11.004 Fang, 2017, J. Am. Chem. Soc., 139, 3399, 10.1021/jacs.6b11023 Singh, 2016, J. Am. Chem. Soc., 138, 13006, 10.1021/jacs.6b07612 Ma, 2016, Angew. Chem. Int. Ed., 55, 6680, 10.1002/anie.201601282 Min, 2016, Nano Energy, 27, 121, 10.1016/j.nanoen.2016.06.043 Yin, 2016, Nano Energy, 27, 35, 10.1016/j.nanoen.2016.06.035 Qiao, 2014, Electrochem. Commun., 38, 8, 10.1016/j.elecom.2013.10.023 M. Fan, S. Fu, Y. Liu, C. Ma, J. Qiao, Proceedings of the Electrochemical Conference on Energy & the Environment (ECEE), March 13–16, 2014. Fan, 2014, RSC Adv., 4, 44583, 10.1039/C4RA09442E Machunda, 2011, Curr. Appl. Phys., 11, 986, 10.1016/j.cap.2011.01.003 Huang, 2017, Angew. Chem. Int. Ed., 56, 3594, 10.1002/anie.201612617 Chen, 2012, J. Am. Chem. Soc., 134, 19969, 10.1021/ja309317u Wu, 2016, Nano Energy, 27, 225, 10.1016/j.nanoen.2016.06.028 Bonin, 2017, Coord. Chem. Rev., 334, 184, 10.1016/j.ccr.2016.09.005 Rosen, 2011, Science, 334, 643, 10.1126/science.1209786 Peterson, 2010, Energy Environ. Sci., 3, 1311, 10.1039/c0ee00071j Barton Cole, 2010, J. Am. Chem. Soc., 132, 11539, 10.1021/ja1023496 Irvine, 2016, Nat. Energy, 1, 1, 10.1038/nenergy.2015.14 Ebbesen, 2014, Chem. Rev., 114, 10697, 10.1021/cr5000865 Gao, 2016, Energy Environ. Sci., 9, 1602, 10.1039/C5EE03858H Zhu, 2015, Angew. Chem. Int. Ed., 54, 3897, 10.1002/anie.201408998 Suntivich, 2011, Science, 334, 1383, 10.1126/science.1212858 Laguna-Bercero, 2010, Chem. Mater., 22, 1134, 10.1021/cm902425k Bugaris, 2014, J. Mater. Chem. A, 2, 4045, 10.1039/C3TA14913G Suthirakun, 2014, J. Am. Chem. Soc., 136, 8374, 10.1021/ja502629j Nguyen, 2015, Chem. Ing. Tech., 87, 354, 10.1002/cite.201400090 Hansen, 2015, Faraday Discuss., 182, 9, 10.1039/C5FD90071A Jensen, 2015, Energy Environ. Sci., 8, 2471, 10.1039/C5EE01485A Nguyen, 2013, Electrochem. Soc. Interface, 55 Mahato, 2015, Prog. Mater. Sci., 72, 141, 10.1016/j.pmatsci.2015.01.001 Graves, 2014, Nat. Mater., 14, 239, 10.1038/nmat4165 Wachsman, 2011, Science, 334, 935, 10.1126/science.1204090 Wang, 2016, J. Power Sources, 305, 240, 10.1016/j.jpowsour.2015.11.097 Chen, 2014, Energy Environ. Sci., 7, 4018, 10.1039/C4EE02786H Stoots, 2009, Int. J. Hydrog. Energy, 34, 4208, 10.1016/j.ijhydene.2008.08.029 Menon, 2015, J. Power Sources, 274, 768, 10.1016/j.jpowsour.2014.09.158 Otto, 2015, Energy Environ. Sci., 8, 3283, 10.1039/C5EE02591E Kiss, 2016, Chem. Eng. J., 284, 260, 10.1016/j.cej.2015.08.101 Kourkoumpas, 2016, Int. J. Hydrog. Energy, 41, 16674, 10.1016/j.ijhydene.2016.07.100 Wiesberg, 2016, Energy Convers. Manag., 125, 320, 10.1016/j.enconman.2016.04.041 Pérez-Fortes, 2016, Appl. Energy, 161, 718, 10.1016/j.apenergy.2015.07.067 Pérez-Fortes, 2014, Energy Procedia, 63, 7968, 10.1016/j.egypro.2014.11.834 Bose, 2015, Clean Technol. Environ. Policy, 17, 1271, 10.1007/s10098-015-0960-7 Kuenen, 2016, Comput. Chem. Eng., 86, 136, 10.1016/j.compchemeng.2015.12.025 Pérez-Fortes, 2016, Int. J. Hydrog. Energy, 41, 16444, 10.1016/j.ijhydene.2016.05.199 Fu, 2010, Energy Environ. Sci., 3, 1365, 10.1039/c0ee90020f Giglio, 2015, J. Energy Storage, 2, 64, 10.1016/j.est.2015.06.004 Ma, 2015, J. Mater. Chem. A, 3, 207, 10.1039/C4TA04993D Chen, 2013, Adv. Energy Mater., 3, 1221, 10.1002/aenm.201300025 Han, 2012, Energy Environ. Sci., 5, 8598, 10.1039/c2ee03592h Sase, 2008, J. Electrochem. Soc., 155, B793, 10.1149/1.2928612