Multimodal analysis using [11C]PiB-PET/MRI for functional evaluation of patients with Alzheimer’s disease

Springer Science and Business Media LLC - Tập 10 - Trang 1-12 - 2020
Hidehiko Okazawa1, Masamichi Ikawa1,2, Minyoung Jung1,3, Rikiya Maruyama1, Tetsuya Tsujikawa1, Tetsuya Mori1, Mahmudur G. M. Rahman1,4, Akira Makino1, Yasushi Kiyono1, Hirotaka Kosaka3
1Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
2Department of Neurology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
3Department of Psychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
4Department of Biomedical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh

Tóm tắt

Multimodal PET/MRI image data simultaneously obtained from patients with early-stage of Alzheimer’s disease (eAD) were assessed in order to observe pathophysiologic and functional changes, as well as alterations of morphology and connectivity in the brain. Fifty-eight patients with mild cognitive impairment and early dementia (29 males, 69 ± 12 years) underwent [11C]Pittsburgh compound-B (PiB) PET/MRI with 70-min PET and MRI scans. Sixteen age-matched healthy controls (CTL) (9 males, 68 ± 11 years) were also studied with the same scanning protocol. Cerebral blood flow (CBF) was calculated from the early phase PET images using the image-derived input function method. A standardized uptake value ratio (SUVr) was calculated from 50 to 70 min PET data with a reference region of the cerebellar cortex. MR images such as 3D-T1WI, resting-state functional MRI (RS-fMRI), diffusion tensor image (DTI), and perfusion MRI acquired during the dynamic PET scan were also analyzed to evaluate various brain functions on MRI. Twenty-seven of the 58 patients were determined as eAD based on the results of PiB-PET and clinical findings, and a total of 43 subjects’ data including CTL were analyzed in this study. PiB SUVr values in all cortical regions of eAD were significantly greater than those of CTL. The PiB accumulation intensity was negatively correlated with cognitive scores. The regional PET-CBF values of eAD were significantly lower in the bilateral parietal lobes and right temporal lobe compared with CTL, but not in MRI perfusion; however, SPM showed regional differences on both PET- and MRI-CBF. SPM analysis of RS-fMRI delineated regional differences between the groups in the anterior cingulate cortex and the left precuneus. VBM analysis showed atrophic changes in the AD group in a part of the bilateral hippocampus; however, analysis of fractional anisotropy calculated from DTI data did not show differences between the two groups. Multimodal analysis conducted with various image data from PiB-PET/MRI scans showed differences in regional CBF, cortical volume, and neuronal networks in different regions, indicating that pathophysiologic and functional changes in the AD brain can be observed from various aspects of neurophysiologic parameters. Application of multimodal brain images using PET/MRI would be ideal for investigating pathophysiologic changes in patients with dementia and other neurodegenerative diseases.

Tài liệu tham khảo

Drzezga A, Barthel H, Minoshima S, Sabri O. Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med. 2014;55:47S–55S. Barthel H, Schroeter ML, Hoffmann KT, Sabri O. PET/MR in dementia and other neurodegenerative diseases. Semin Nucl Med. 2015;45(3):224–33. Zhang XY, Yang ZL, Lu GM, Yang GF, Zhang LJ. PET/MR imaging: new frontier in Alzheimer’s disease and other dementias. Front Mol Neurosci. 2017;10:343. Marchitelli R, Aiello M, Cachia A, Quarantelli M, Cavaliere C, Postiglione A, Tedeschi G, Montella P, Milan G, Salvatore M, Salvatore E, Baron JC, Pappatà S. Simultaneous resting-state FDG-PET/fMRI in Alzheimer disease: relationship between glucose metabolism and intrinsic activity. Neuroimage. 2018;176:246–58. Kaltoft NS, Marner L, Larsen VA, Hasselbalch SG, Law I, Henriksen OM. Hybrid FDG PET/MRI vs. FDG PET and CT in patients with suspected dementia - a comparison of diagnostic yield and propagated influence on clinical diagnosis and patient management. PLoS One. 2019;14(5):e0216409. Okazawa H, Tsujikawa T, Higashino Y, Kikuta K, Mori T, Makino A, Kiyono Y. No significant difference found in PET/MRI CBF values reconstructed with CT-atlas-based and ZTE MR attenuation correction. Eur J Nucl Med Mol Img Res. 2019;9(1):26. Schilling LP, Pascoal TA, Zimmer ER, Mathotaarachchi S, Shin M, de Mello Rieder CR, Gauthier S, Palmini A, Rosa-Neto P. Alzheimer’s disease neuroimaging initiative. Regional amyloid-β load and white matter abnormalities contribute to hypometabolism in Alzheimer’s dementia. Mol Neurobiol. 2019;56(7):4916–24. Levin CS, Maramraju SH, Khalighi MM, Deller TW, Delso G, Jansen F. Design features and mutual compatibility studies of the time-of-flight PET capable GE SIGNA PET/MR system. IEEE Trans Med Imaging. 2016;35:1907–14. Okazawa H, Higashino Y, Tsujikawa T, Arishima H, Mori T, Kiyono Y, Kimura H, Kikuta K. Noninvasive method for measurement of cerebral blood flow using O-15 water PET/MRI with ASL correlation. Eur J Radiol. 2018;105:102–9. Wiesinger F, Sacolick LI, Menini A, Kaushik SS, Ahn S, Veit-Haibach P, Delso G, Shanbhag DD. Zero TE MR bone imaging in the head. Magn Reson Med. 2016;75:107–14. Delso G, Kemp B, Kaushik S, Wiesinger F, Sekine T. Improving PET/MR brain quantitation with template-enhanced ZTE. J Nucl Med. 2018;181:403–13. Islam MM, Tsujikawa T, Mori T, Kiyono Y, Okazawa H. Estimation of arterial input by a noninvasive image derived method in brain H215O PET study: confirmation of arterial location using MR angiography. Phys Med Biol. 2017;62:4514–24. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab. 2005;25(11):1528–47. Ohta S, Meyer E, Fujita H, Reutens DC, Evans A, Gjedde A. Cerebral [15O]water clearance in humans determined by PET: I. Theory and normal values. J Cereb Blood Flow Metab. 1996;16:765–80. Islam MM, Tsujikawa T, Mori T, Kiyono Y, Okazawa H. Pixel-by-pixel precise delay correction for measurement of cerebral hemodynamic parameters in H215O PET study. Ann Nucl Med. 2017a;31(4):283–94. Blomquist G, Engler H, Nordberg A, Ringheim A, Wall A, Forsberg A, Estrada S, Frändberg P, Antoni G, Långström B. Unidirectional influx and net accumulation of PIB. Open Neuroimag J. 2008;2:114–25. Yaqub M, Tolboom N, Boellaard R, van Berckel BN, van Tilburg EW, Luurtsema G, Scheltens P, Lammertsma AA. Simplified parametric methods for [11C]PIB studies. Neuroimage. 2008;42(1):76–86. Dai W, Garcia D, de Bazelaire C, Alsop DC. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med. 2008;60(6):1488–97. Tsujikawa T, Kimura H*, Matsuda T, Fujiwara Y, Isozaki M, Kikuta K, Okazawa H. Arterial transit time mapping obtained by pulsed continuous 3D ASL imaging with multiple post-label delay acquisitions: comparative study with PET-CBF in patients with chronic occlusive cerebrovascular disease. PLoS ONE. 2016;11(6):e0156005. Alsop DC, Detre JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab. 1996;16(6):1236–49. Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, Parkes LM, Smits M, van Osch MJ, Wang DJ, Wong EC, Zaharchuk G. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med. 2015;73(1):102–16. Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:1–7. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22:394–400. Paakki J-J, Rahko J, Long X, Moilanen I, Tervonen O, Nikkinen J, Starck T, Remes J, Hurtig T, Haapsamo H, Jussila K, Kuusikko-Gauffin S, Mattila ML, Zang Y, Kiviniemi V. Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Res. 2010;1321:169–79. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of restingstate functional connectivity data. Neuroimage. 2013;64:240–56. Yan CG, Cheung B, Kelly C, Colcombe S, Craddock RC, Di Martino A, Li Q, Zuo XN, Castellanos FX, Milham MP. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage. 2013;76:183–201. Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage. 2012;59:431–8. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–54. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113. Hirata Y, Matsuda H, Nemoto K, Ohnishi T, Hirao K, Yamashita F, Asada T, Iwabuchi S, Samejima H. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neurosci Lett. 2005;382(3):269–74. Matsuda H, Mizumura S, Nemoto K, Yamashita F, Imabayashi E, Sato N, Asada T. Automatic voxel-based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through exponentiated lie algebra improves the diagnosis of probable Alzheimer disease. Am J Neuroradiol. 2012;33(6):1109–14. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage. 1999;9:179–94. Yendiki A, Panneck P, Srinivasan P, Stevens A, Zöllei L, Augustinack J, Wang R, Salat D, Ehrlich S, Behrens T, Jbabdi S, Gollub R, Fischl B. Automated probabilistic reconstruction of white-matter pathwaysin health and disease using an atlas of the underlying anatomy. Front Neuroinform. 2011;5:23. Minoshima S, Foster NL, Kuhl DE. Posterior cingulate cortex in Alzheimer’s disease. Lancet. 1994;344(8926):895. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94. Ishii K, Sasaki M, Yamaji S, Sakamoto S, Kitagaki H, Mori E. Demonstration of decreased posterior cingulate perfusion in mild Alzheimer’s disease by means of H215O positron emission tomography. Eur J Nucl Med. 1997;24(6):670–3. Stankoff B, Freeman L, Aigrot MS, Chardain A, Dollé F, Williams A, Galanaud D, Armand L, Lehericy S, Lubetzki C, Zalc B, Bottlaender M. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-11C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann Neurol. 2011;69(4):673–80. Veronese M, Bodini B, García-Lorenzo D, Battaglini M, Bongarzone S, Comtat C, Bottlaender M, Stankoff B, Turkheimer FE. Quantification of [11C]PIB PET for imaging myelin in the human brain: a test-retest reproducibility study in high-resolution research tomography. J Cereb Blood Flow Metab. 2015;35(11):1771–82. Auvity S, Tonietto M, Caillé F, Bodini B, Bottlaender M, Tournier N, Kuhnast B, Stankoff B. Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB. Eur J Nucl Med Mol Imaging. 2019; (in press). Jack CR Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, Petersen RC, Trojanowski JQ. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–28. Rostomian AH, Madison C, Rabinovici GD, Jagust WJ. Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med. 2011;52(2):173–9. Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N, Ishii K, Kuwabara Y, Senda M. Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging. 2004;31:635–43. Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, Nakano S, Takasaki M. Longitudinal evaluation of early Alzheimer’s disease using brain perfusion SPECT. J Nucl Med. 2000;41(7):1155–62. Yeh YC, Li CW, Kuo YT, Huang MF, Liu TL, Jaw TS, Yang YH, Kuo KC, Chen CS. Association between altered neurochemical metabolites and apathy in patients with Alzheimer’s disease. Int Psychogeriatr. 2018;30(5):761–8. Ducharme S, Price BH, Dickerson BC. Apathy: a neurocircuitry model based on frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2018;89(4):389–96.