Numerical simulation for seismic performance evaluation of fibre reinforced concrete beam–column sub-assemblages
Tài liệu tham khảo
Henager CH. Steel fibrous, ductile concrete joint for seismic-resistant structures. Reinforced concrete in seismic zones, SP-53. Detroit: American Concrete Institute; 1977. p. 371–386.
Filiatrault, 1994, Seismic performance of codedesigned fiber reinforced concrete joints, ACI Struct J, 91, 564
Bayasi, 2002, Reduction of lateral reinforcement in seismic beam–column connection via application of steel fibers, ACI Struct J, 99, 772
Parra-Montesinos, 2005, Highly damage tolerant beam column joints through use of high-performance fiber-reinforced cement composites, ACI Struct J, 102, 487
Ganesan, 2014, Behaviour of hybrid fibre reinforced concrete beam–column joints under reverse cyclic loads, Mater Des, 54, 686, 10.1016/j.matdes.2013.08.076
Bedirhanoglu, 2013, Precast fiber reinforced cementitious composites for seismic retrofit of deficient rc joints – a pilot study, Eng Struct, 52, 192, 10.1016/j.engstruct.2013.02.020
Maya, 2013, Experimental assessment of connections for precast concrete frames using ultra high performance fibre reinforced concrete, Constr Build Mater, 48, 173, 10.1016/j.conbuildmat.2013.07.002
Caballero-Morrison, 2012, Behaviour of steel-fibre-reinforced normal-strength concrete slender columns under cyclic loading, Eng Struct, 39, 162, 10.1016/j.engstruct.2012.02.003
Lee, 2004, Computational modeling of the response and damage behavior of fiber reinforced cellular concrete, Comput Struct, 82, 581, 10.1016/j.compstruc.2004.01.001
Haach, 2008, Evaluation of the influence of the column axial load on the behavior of monotonically loaded R/C exterior beam–column joints through numerical simulations, Eng Struct, 30, 965, 10.1016/j.engstruct.2007.06.005
Shannag, 2007, Modeling the cyclic response of fiber reinforced concrete joints, Eng Struct, 29, 2960, 10.1016/j.engstruct.2007.02.003
Papanikolaou, 2009, Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: methodology, Comput Struct, 87, 1427, 10.1016/j.compstruc.2009.05.004
Yu, 2013, Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages, Eng Struct, 55, 90, 10.1016/j.engstruct.2011.08.040
Masi, 2013, Study of the seismic behavior of external RC beam–column joints through experimental tests and numerical simulations, Engineering Structures, 52, 207
Abbas, 2014, Seismic response of steel fibre reinforced concrete beam–column joints, Eng Struct, 59, 261, 10.1016/j.engstruct.2013.10.046
Zhang, 2013, Experimental and numerical investigation of the seismic performance of hollow rectangular bridge piers constructed with and without steel fiber reinforced concrete, Eng Struct, 48, 255, 10.1016/j.engstruct.2012.09.040
Ruano, 2015, Numerical modeling of reinforced concrete beams repaired and strengthened with SFRC, Eng Struct, 86, 168, 10.1016/j.engstruct.2014.12.030
CEN Technical Committee 250. Eurocode 2, design of concrete structures-Part 1–1: general rules and rules for buildings (EN 1992-1-1:2004). Berlin, Germany; 2005.
CEN Technical Committee 250/SC8. Eurocode 8, design of structures for earthquake resistance-Part 1: general rules, seismic actions and rules for buildings (ENV 1998-1:2004). Berlin, Germany; 2006.
Röhm C. Zum Tragverhalten von Rahmenknoten mit Stahlfaserbeton unter zyklischer Belastung. Dissertation, Institut für Leichtbau, Entwerfen und Konstruieren, Universität Stuttgart; 2012.
Röhm, 2012, Behaviour of fibre reinforced beam–column sub-assemblages under reversed cyclic loading, Constr Build Mater, 36, 319, 10.1016/j.conbuildmat.2012.04.114
Cervenka, 2007
Comité Euro-International du Béton. CEB-FIP Model code 2010, first complete draft, fib Bulletin 55 and 56. International federation for structural concrete. Lausanne, vol. 1 March 2010, Vol. 2 April 2010.
Remmel G. Zum Zug- und Schubtragverhalten von Bauteilen aus hochfestem Beton. DAfStb, Heft 444. Beuth Verlag, Berlin; 1994.
Menegotto M, Pinto PE. Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behaviour of elements under combined normal force and bending. In: Proceedings of IABSE symposium on resistance and ultimate deformability of structures acted on by well defined repeated loads; 1973. p. 15–22.
Cervenka V, Cervenka J, Jendele L. Bond in finite element modelling of reinforced concrete. EURO-C 2003 computational modelling of concrete structures 17th–20th March 2003. St. Johann im Pongau, Austria; 2003. p. 1–6.
Sasmal, 2010, Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading, Comput Concr, 7, 203, 10.12989/cac.2010.7.3.203
Sasmal, 2011, Numerical analysis of fiber composite-steel plate upgraded beam–column sub-assemblages under cyclic loading, Compos Struct, 93, 599, 10.1016/j.compstruct.2010.08.019
Pfyl T. Tragverhalten von Stahlfaserbeton. IBK Bericht Nr. 279. Dissertation, ETH Zürich; 2003. (in German).
Kützing, 2002, Bruchmechanischer Ansatz zur Tragfähigkeitsanalyse von Stahlfaserbeton, Beton-und Stahlbetonbau, 97, 140, 10.1002/best.200200640
Hordijk DA. Local approach to fatigue of concrete. Ph.D. Thesis. Delft: University of Technology; 1991.
Deutscher Ausschuss für Stahlbeton. Richtlinie Stahlfaserbeton (Schlussentwurf) – Ergänzungen zu DIN 1045. Teile 1 bis 4, Beuth Verlag, Berlin’ 2008 [in German].
Tschegg, 2007, Biaxiales Bruchverhalten von stahlfaserverstärktem Beton, Zement Beton, 1, 20
Pantazopoulou, 1994, On earthquake resistant reinforced concrete frame connections, Can J Civ Eng, 21, 307, 10.1139/l94-032
Parra-Montesinos, 2003, Towards deformation-based capacity design of RCS beam–column connections, Eng Struct, 25, 681, 10.1016/S0141-0296(02)00177-3
Sasmal, 2013, Analytical and experimental investigations on seismic performance of exterior beam–column subassemblages of existing RC-framed building, Earthquake Eng Struct Dynam, 42, 1785, 10.1002/eqe.2298
Gebekken, 2008, Modellbildung zur Simulation von Stahlfaserbeton unter hochdynamischer Belastung, Beton und Stahlbetonbau Ernst & Sohn Verlag, 103, 398, 10.1002/best.200800622
DIN 1045-1. Tragwerke aus Beton, Stahlbeton und Spannbeton. Teil 1: Bemessung und Konstruktion. Beuth Verlag, Berlin; 2001 [in German].
Joint ACI-ASCE Committee 352. Recommendations for design of beam–column connections in monolithic reinforced concrete structures (ACI 352R-02). Farmington Hills, Michigan: American Concrete Institute; 2002, 37 pp.
CEN Technical Committee 250/SC8. Eurocode 8: earthquake resistant design of structures—Part 1: general rules and rules for buildings (ENV 1998-1-1/2/3). Berlin, Germany: CEN; 1995, 192 pp.
New Zealand Standard NZS 3101. Code of practice for the design of concrete structures. Wellington: Standards Association of New Zealand; 1995.
Hegger J, Roeser W. Die Bemessung und Konstruktion von Rahmenknoten – Grundlagen und Beispiele gemäß DIN 1045–1. Deutscher Ausschuss für Stahlbeton DafStb 2002; Heft 532, Beuth Verlag, Berlin [in German].
Vishnu P, Saptarshi Sasmal, Ramanjaneyulu K. Simulation for interior beam–column joint behaviour using softened strut and tie model. In: The proceedings of fifth international congress on computational mechanics and simulation (ICCMS 2014), to be held at CSIR-structural engineering research centre. Chennai, India; December 2014.
FEMA 273. NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Report No. FEMA-273. Washington D.C.: Federal Emergency Management Agency; 1997.
Tsonos, 2007, Cyclic load behavior of reinforced concrete beam–column subassemblages of modern structures, ACI Struct J, 104, 468