Structural basis of glycan interaction in gastroenteric viral pathogens

Current Opinion in Virology - Tập 7 - Trang 119-127 - 2014
BV Venkataram Prasad1,2, Sreejesh Shanker1, Liya Hu1, Jae-Mun Choi1, Sue E Crawford2, Sasirekha Ramani2, Rita Czako2, Robert L Atmar2, Mary K Estes2
1Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
2Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, United States

Tài liệu tham khảo

Olofsson, 2005, Glycoconjugate glycans as viral receptors, Ann Med, 37, 154, 10.1080/07853890510007340 Connor, 1994, Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates, Virology, 205, 17, 10.1006/viro.1994.1615 Reiter, 2011, Crystal structure of reovirus attachment protein sigma1 in complex with sialylated oligosaccharides, PLoS Pathog, 7, e1002166, 10.1371/journal.ppat.1002166 Dormitzer, 2002, The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site, EMBO J, 21, 885, 10.1093/emboj/21.5.885 Summerford, 1998, Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J Virol, 72, 1438, 10.1128/JVI.72.2.1438-1445.1998 Hueffer, 2003, Parvovirus host range, cell tropism and evolution, Curr Opin Microbiol, 6, 392, 10.1016/S1369-5274(03)00083-3 Ng, 2010, Structural characterization of the dual glycan binding adeno-associated virus serotype 6, J Virol, 84, 12945, 10.1128/JVI.01235-10 Shieh, 1992, Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans, J Cell Biol, 116, 1273, 10.1083/jcb.116.5.1273 Marionneau, 2002, Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals, Gastroenterology, 122, 1967, 10.1053/gast.2002.33661 Hutson, 2003, Norwalk virus-like particle hemagglutination by binding to H histo-blood group antigens, J Virol, 77, 405, 10.1128/JVI.77.1.405-415.2003 Huang, 2003, Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns, J Infect Dis, 188, 19, 10.1086/375742 Hu, 2012, Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen, Nature, 485, 256, 10.1038/nature10996 Huang, 2012, Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner, J Virol, 86, 4833, 10.1128/JVI.05507-11 Nicholls, 2008, Evolving complexities of influenza virus and its receptors, Trends Microbiol, 16, 149, 10.1016/j.tim.2008.01.008 Cotmore, 2007, Parvoviral host range and cell entry mechanisms, Adv Virus Res, 70, 183, 10.1016/S0065-3527(07)70005-2 Rillahan, 2011, Glycan microarrays for decoding the glycome, Annu Rev Biochem, 80, 797, 10.1146/annurev-biochem-061809-152236 Song, 2011, A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses, J Biol Chem, 286, 31610, 10.1074/jbc.M111.274217 Song, 2011, Shotgun glycomics: a microarray strategy for functional glycomics, Nat Methods, 8, 85, 10.1038/nmeth.1540 Tate, 2009, Disease and economic burden of rotavirus diarrhoea in India, Vaccine, 27, F18, 10.1016/j.vaccine.2009.08.098 Estes, 2007, Rotaviruses, vol 2, 1917 Gray, 2011, Rotaviruses, Methods Mol Biol, 665, 325, 10.1007/978-1-60761-817-1_18 Matthijnssens, 2011, Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains, Infect Genet Evol, 11, 1396, 10.1016/j.meegid.2011.05.007 Li, 2009, Rotavirus architecture at subnanometer resolution, J Virol, 83, 1754, 10.1128/JVI.01855-08 Prasad, 1988, Three-dimensional structure of rotavirus, J Mol Biol, 199, 269, 10.1016/0022-2836(88)90313-0 Settembre, 2011, Atomic model of an infectious rotavirus particle, EMBO J, 30, 408, 10.1038/emboj.2010.322 Matthijnssens, 2011, Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG), Arch Virol, 156, 1397, 10.1007/s00705-011-1006-z Arias, 1996, Trypsin activation pathway of rotavirus infectivity, J Virol, 70, 5832, 10.1128/JVI.70.9.5832-5839.1996 Estes, 1981, Proteolytic enhancement of rotavirus infectivity: molecular mechanisms, J Virol, 39, 879, 10.1128/JVI.39.3.879-888.1981 Baker, 2010, Rotavirus cell entry, Curr Top Microbiol Immunol, 343, 121 Lopez, 2012, Rotavirus–host cell interactions: an arms race, Curr Opin Virol, 10.1016/j.coviro.2012.05.001 Blanchard, 2007, Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*), J Mol Biol, 367, 1215, 10.1016/j.jmb.2007.01.028 Lopez, 2006, Early steps in rotavirus cell entry, Curr Top Microbiol Immunol, 309, 39 Ciarlet, 1999, Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity, J Gen Virol, 80, 943, 10.1099/0022-1317-80-4-943 Haselhorst, 2009, Sialic acid dependence in rotavirus host cell invasion, Nat Chem Biol, 5, 91, 10.1038/nchembio.134 Gerna, 1994, Identification of a new VP4 serotype of human rotaviruses, Virology, 200, 66, 10.1006/viro.1994.1163 Matthijnssens, 2009, Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla?, J Virol, 83, 2917, 10.1128/JVI.02246-08 Chitambar, 2011, Molecular characterization of unusual bovine group A rotavirus G8P[14] strains identified in western India: emergence of P[14] genotype, Vet Microbiol, 148, 384, 10.1016/j.vetmic.2010.08.027 Fukai, 2004, Molecular characterization of novel P[14],G8 bovine group A rotavirus, Sun9, isolated in Japan, Virus Res, 105, 101, 10.1016/j.virusres.2004.04.016 Marionneau, 2001, ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world, Biochimie, 83, 565, 10.1016/S0300-9084(01)01321-9 Ramani, 2013, The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans, J Virol, 87, 7255, 10.1128/JVI.03518-12 Matthijnssens, 2010, Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq, Virology, 403, 111, 10.1016/j.virol.2010.04.004 Hutson, 2002, Norwalk virus infection and disease is associated with ABO histo-blood group type, J Infect Dis, 185, 1335, 10.1086/339883 Ramani, 2014, Epidemiology of human noroviruses and updates on vaccine development, Curr Opin Gastroenterol, 30, 25, 10.1097/MOG.0000000000000022 Zheng, 2006, Norovirus classification and proposed strain nomenclature, Virology, 346, 312, 10.1016/j.virol.2005.11.015 Kroneman, 2008, Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006, J Clin Microbiol, 46, 2959, 10.1128/JCM.00499-08 Siebenga, 2007, Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006, J Virol, 81, 9932, 10.1128/JVI.00674-07 Donaldson, 2008, Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations, Immunol Rev, 225, 190, 10.1111/j.1600-065X.2008.00680.x Chen, 2006, X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity, Proc Natl Acad Sci U S A, 103, 8048, 10.1073/pnas.0600421103 Prasad, 1999, X-ray crystallographic structure of the Norwalk virus capsid, Science, 286, 287, 10.1126/science.286.5438.287 Wang, 2013, Atomic model of rabbit hemorrhagic disease virus by cryo-electron microscopy and crystallography, PLoS Pathog, 9, e1003132, 10.1371/journal.ppat.1003132 Katpally, 2010, High-resolution cryo-electron microscopy structures of murine norovirus 1 and rabbit hemorrhagic disease virus reveal marked flexibility in the receptor binding domains, J Virol, 84, 5836, 10.1128/JVI.00314-10 Tan, 2006, C-terminal arginine cluster is essential for receptor binding of norovirus capsid protein, J Virol, 80, 7322, 10.1128/JVI.00233-06 Choi, 2008, Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus, Proc Natl Acad Sci U S A, 105, 9175, 10.1073/pnas.0803275105 Shanker, 2011, Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: implications for epochal evolution, J Virol, 85, 8635, 10.1128/JVI.00848-11 Shanker, 2014, Structural analysis of determinants to HBGA binding specificity in GI noroviruses, J Virol, 88, 6168, 10.1128/JVI.00201-14 Cao, 2007, Structural basis for the recognition of blood group trisaccharides by norovirus, J Virol, 81, 5949, 10.1128/JVI.00219-07 Bu, 2008, Structural basis for the receptor binding specificity of Norwalk virus, J Virol, 82, 5340, 10.1128/JVI.00135-08 Kubota, 2012, Structural basis for the recognition of Lewis antigens by genogroup I norovirus, J Virol, 86, 11138, 10.1128/JVI.00278-12 Hansman, 2011, Crystal structures of GII.10 and GII.12 norovirus protruding domains in complex with histo-blood group antigens reveal details for a potential site of vulnerability, J Virol, 85, 6687, 10.1128/JVI.00246-11 Chen, 2011, Crystallography of a Lewis-binding norovirus, elucidation of strain-specificity to the polymorphic human histo-blood group antigens, PLoS Pathog, 7, e1002152, 10.1371/journal.ppat.1002152 Chen, 2013, Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis, J Virol, 87, 9547, 10.1128/JVI.01376-13 Katpally, 2008, Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles, J Virol, 82, 2079, 10.1128/JVI.02200-07 Trang, 2014, Association between norovirus and rotavirus infection and histo-blood group antigen types in Vietnamese children, J Clin Microbiol, 52, 1366, 10.1128/JCM.02927-13 Imbert-Marcille, 2014, A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype, J Infect Dis, 209, 1227, 10.1093/infdis/jit655 LoBue, 2006, Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains, Vaccine, 24, 5220, 10.1016/j.vaccine.2006.03.080 Reeck, 2010, Serological correlate of protection against norovirus-induced gastroenteritis, J Infect Dis, 202, 1212, 10.1086/656364 Waterhouse, 2009, Jalview Version 2—a multiple sequence alignment editor and analysis workbench, Bioinformatics, 25, 1189, 10.1093/bioinformatics/btp033