Structural basis of glycan interaction in gastroenteric viral pathogens
Tài liệu tham khảo
Olofsson, 2005, Glycoconjugate glycans as viral receptors, Ann Med, 37, 154, 10.1080/07853890510007340
Connor, 1994, Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates, Virology, 205, 17, 10.1006/viro.1994.1615
Reiter, 2011, Crystal structure of reovirus attachment protein sigma1 in complex with sialylated oligosaccharides, PLoS Pathog, 7, e1002166, 10.1371/journal.ppat.1002166
Dormitzer, 2002, The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site, EMBO J, 21, 885, 10.1093/emboj/21.5.885
Summerford, 1998, Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J Virol, 72, 1438, 10.1128/JVI.72.2.1438-1445.1998
Hueffer, 2003, Parvovirus host range, cell tropism and evolution, Curr Opin Microbiol, 6, 392, 10.1016/S1369-5274(03)00083-3
Ng, 2010, Structural characterization of the dual glycan binding adeno-associated virus serotype 6, J Virol, 84, 12945, 10.1128/JVI.01235-10
Shieh, 1992, Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans, J Cell Biol, 116, 1273, 10.1083/jcb.116.5.1273
Marionneau, 2002, Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals, Gastroenterology, 122, 1967, 10.1053/gast.2002.33661
Hutson, 2003, Norwalk virus-like particle hemagglutination by binding to H histo-blood group antigens, J Virol, 77, 405, 10.1128/JVI.77.1.405-415.2003
Huang, 2003, Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns, J Infect Dis, 188, 19, 10.1086/375742
Hu, 2012, Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen, Nature, 485, 256, 10.1038/nature10996
Huang, 2012, Spike protein VP8* of human rotavirus recognizes histo-blood group antigens in a type-specific manner, J Virol, 86, 4833, 10.1128/JVI.05507-11
Nicholls, 2008, Evolving complexities of influenza virus and its receptors, Trends Microbiol, 16, 149, 10.1016/j.tim.2008.01.008
Cotmore, 2007, Parvoviral host range and cell entry mechanisms, Adv Virus Res, 70, 183, 10.1016/S0065-3527(07)70005-2
Rillahan, 2011, Glycan microarrays for decoding the glycome, Annu Rev Biochem, 80, 797, 10.1146/annurev-biochem-061809-152236
Song, 2011, A sialylated glycan microarray reveals novel interactions of modified sialic acids with proteins and viruses, J Biol Chem, 286, 31610, 10.1074/jbc.M111.274217
Song, 2011, Shotgun glycomics: a microarray strategy for functional glycomics, Nat Methods, 8, 85, 10.1038/nmeth.1540
Tate, 2009, Disease and economic burden of rotavirus diarrhoea in India, Vaccine, 27, F18, 10.1016/j.vaccine.2009.08.098
Estes, 2007, Rotaviruses, vol 2, 1917
Gray, 2011, Rotaviruses, Methods Mol Biol, 665, 325, 10.1007/978-1-60761-817-1_18
Matthijnssens, 2011, Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains, Infect Genet Evol, 11, 1396, 10.1016/j.meegid.2011.05.007
Li, 2009, Rotavirus architecture at subnanometer resolution, J Virol, 83, 1754, 10.1128/JVI.01855-08
Prasad, 1988, Three-dimensional structure of rotavirus, J Mol Biol, 199, 269, 10.1016/0022-2836(88)90313-0
Settembre, 2011, Atomic model of an infectious rotavirus particle, EMBO J, 30, 408, 10.1038/emboj.2010.322
Matthijnssens, 2011, Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG), Arch Virol, 156, 1397, 10.1007/s00705-011-1006-z
Arias, 1996, Trypsin activation pathway of rotavirus infectivity, J Virol, 70, 5832, 10.1128/JVI.70.9.5832-5839.1996
Estes, 1981, Proteolytic enhancement of rotavirus infectivity: molecular mechanisms, J Virol, 39, 879, 10.1128/JVI.39.3.879-888.1981
Baker, 2010, Rotavirus cell entry, Curr Top Microbiol Immunol, 343, 121
Lopez, 2012, Rotavirus–host cell interactions: an arms race, Curr Opin Virol, 10.1016/j.coviro.2012.05.001
Blanchard, 2007, Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*), J Mol Biol, 367, 1215, 10.1016/j.jmb.2007.01.028
Lopez, 2006, Early steps in rotavirus cell entry, Curr Top Microbiol Immunol, 309, 39
Ciarlet, 1999, Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity, J Gen Virol, 80, 943, 10.1099/0022-1317-80-4-943
Haselhorst, 2009, Sialic acid dependence in rotavirus host cell invasion, Nat Chem Biol, 5, 91, 10.1038/nchembio.134
Gerna, 1994, Identification of a new VP4 serotype of human rotaviruses, Virology, 200, 66, 10.1006/viro.1994.1163
Matthijnssens, 2009, Are human P[14] rotavirus strains the result of interspecies transmissions from sheep or other ungulates that belong to the mammalian order Artiodactyla?, J Virol, 83, 2917, 10.1128/JVI.02246-08
Chitambar, 2011, Molecular characterization of unusual bovine group A rotavirus G8P[14] strains identified in western India: emergence of P[14] genotype, Vet Microbiol, 148, 384, 10.1016/j.vetmic.2010.08.027
Fukai, 2004, Molecular characterization of novel P[14],G8 bovine group A rotavirus, Sun9, isolated in Japan, Virus Res, 105, 101, 10.1016/j.virusres.2004.04.016
Marionneau, 2001, ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world, Biochimie, 83, 565, 10.1016/S0300-9084(01)01321-9
Ramani, 2013, The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans, J Virol, 87, 7255, 10.1128/JVI.03518-12
Matthijnssens, 2010, Molecular and biological characterization of the 5 human-bovine rotavirus (WC3)-based reassortant strains of the pentavalent rotavirus vaccine, RotaTeq, Virology, 403, 111, 10.1016/j.virol.2010.04.004
Hutson, 2002, Norwalk virus infection and disease is associated with ABO histo-blood group type, J Infect Dis, 185, 1335, 10.1086/339883
Ramani, 2014, Epidemiology of human noroviruses and updates on vaccine development, Curr Opin Gastroenterol, 30, 25, 10.1097/MOG.0000000000000022
Zheng, 2006, Norovirus classification and proposed strain nomenclature, Virology, 346, 312, 10.1016/j.virol.2005.11.015
Kroneman, 2008, Analysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006, J Clin Microbiol, 46, 2959, 10.1128/JCM.00499-08
Siebenga, 2007, Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006, J Virol, 81, 9932, 10.1128/JVI.00674-07
Donaldson, 2008, Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations, Immunol Rev, 225, 190, 10.1111/j.1600-065X.2008.00680.x
Chen, 2006, X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity, Proc Natl Acad Sci U S A, 103, 8048, 10.1073/pnas.0600421103
Prasad, 1999, X-ray crystallographic structure of the Norwalk virus capsid, Science, 286, 287, 10.1126/science.286.5438.287
Wang, 2013, Atomic model of rabbit hemorrhagic disease virus by cryo-electron microscopy and crystallography, PLoS Pathog, 9, e1003132, 10.1371/journal.ppat.1003132
Katpally, 2010, High-resolution cryo-electron microscopy structures of murine norovirus 1 and rabbit hemorrhagic disease virus reveal marked flexibility in the receptor binding domains, J Virol, 84, 5836, 10.1128/JVI.00314-10
Tan, 2006, C-terminal arginine cluster is essential for receptor binding of norovirus capsid protein, J Virol, 80, 7322, 10.1128/JVI.00233-06
Choi, 2008, Atomic resolution structural characterization of recognition of histo-blood group antigens by Norwalk virus, Proc Natl Acad Sci U S A, 105, 9175, 10.1073/pnas.0803275105
Shanker, 2011, Structural analysis of histo-blood group antigen binding specificity in a norovirus GII.4 epidemic variant: implications for epochal evolution, J Virol, 85, 8635, 10.1128/JVI.00848-11
Shanker, 2014, Structural analysis of determinants to HBGA binding specificity in GI noroviruses, J Virol, 88, 6168, 10.1128/JVI.00201-14
Cao, 2007, Structural basis for the recognition of blood group trisaccharides by norovirus, J Virol, 81, 5949, 10.1128/JVI.00219-07
Bu, 2008, Structural basis for the receptor binding specificity of Norwalk virus, J Virol, 82, 5340, 10.1128/JVI.00135-08
Kubota, 2012, Structural basis for the recognition of Lewis antigens by genogroup I norovirus, J Virol, 86, 11138, 10.1128/JVI.00278-12
Hansman, 2011, Crystal structures of GII.10 and GII.12 norovirus protruding domains in complex with histo-blood group antigens reveal details for a potential site of vulnerability, J Virol, 85, 6687, 10.1128/JVI.00246-11
Chen, 2011, Crystallography of a Lewis-binding norovirus, elucidation of strain-specificity to the polymorphic human histo-blood group antigens, PLoS Pathog, 7, e1002152, 10.1371/journal.ppat.1002152
Chen, 2013, Development of Norwalk virus-specific monoclonal antibodies with therapeutic potential for the treatment of Norwalk virus gastroenteritis, J Virol, 87, 9547, 10.1128/JVI.01376-13
Katpally, 2008, Structure of antibody-neutralized murine norovirus and unexpected differences from viruslike particles, J Virol, 82, 2079, 10.1128/JVI.02200-07
Trang, 2014, Association between norovirus and rotavirus infection and histo-blood group antigen types in Vietnamese children, J Clin Microbiol, 52, 1366, 10.1128/JCM.02927-13
Imbert-Marcille, 2014, A FUT2 gene common polymorphism determines resistance to rotavirus A of the P[8] genotype, J Infect Dis, 209, 1227, 10.1093/infdis/jit655
LoBue, 2006, Multivalent norovirus vaccines induce strong mucosal and systemic blocking antibodies against multiple strains, Vaccine, 24, 5220, 10.1016/j.vaccine.2006.03.080
Reeck, 2010, Serological correlate of protection against norovirus-induced gastroenteritis, J Infect Dis, 202, 1212, 10.1086/656364
Waterhouse, 2009, Jalview Version 2—a multiple sequence alignment editor and analysis workbench, Bioinformatics, 25, 1189, 10.1093/bioinformatics/btp033