Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy
Tài liệu tham khảo
Chen, 2019, Fiber-optic photoacoustic sensor for remote monitoring of gas micro-leakage, Opt. Express, 27, 4648, 10.1364/OE.27.004648
Bauer, 2006, Pulsed laser surface fragmentation and mid-infrared laser spectroscopy for remote detection of explosives, Appl. Phys. B, 85, 251, 10.1007/s00340-006-2372-1
Gibson, 2017, Real-time imaging of methane gas leaks using a single-pixel camera, Opt. Express, 25, 2998, 10.1364/OE.25.002998
Li, 2016, Development and measurement of a near-infrared CH4 detection system using 1.654 μm wavelength-modulated diode laser and open reflective gas sensing probe, Sens. Actuators B Chem., 225, 188, 10.1016/j.snb.2015.11.037
Goldenstein, 2016, Fiber-coupled diode-laser sensors for calibration free stand-off measurements of gas temperature, pressure, and composition, Appl. Opt., 55, 479, 10.1364/AO.55.000479
Tombez, 2017, Methane absorption spectroscopy on a silicon photonic chip, Optica, 4, 1322, 10.1364/OPTICA.4.001322
Dong, 2016, Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing, Opt. Express, 24, A528, 10.1364/OE.24.00A528
Northern, 2015, Mid-infrared multi-mode absorption spectroscopy using interband cascade lasers for multi-species sensing, Opt. Lett., 40, 4186, 10.1364/OL.40.004186
Jin, 2015, Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range, Nat. Commun., 6, 1, 10.1038/ncomms7767
Kosterev Yu, 2002, Quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 27, 1902, 10.1364/OL.27.001902
Kosterev, 2005, Applications of quartz tuning forks in spectroscopic gas sensing, Rev. Sci. Instrum., 76, 043105, 10.1063/1.1884196
Liu, 2009, Off-beam quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 34, 1594, 10.1364/OL.34.001594
Yi, 2012, T-shape microresonator-based high sensitivity quartz-enhanced photoacoustic spectroscopy sensor, Opt. Express, 20, 9187, 10.1364/OE.20.009187
Patimisco, 2014, Quartz-enhanced photoacoustic spectroscopy: a review, Sensors, 14, 6165, 10.3390/s140406165
Patimisco, 2016, Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review, Adv. Phys. X, 2, 169
Hu, 2019, Quartz tuning fork embedded off-beam quartz-enhanced photoacoustic spectroscopy, Opt. Lett., 44, 2562, 10.1364/OL.44.002562
Patimisco, 2018, Recent advances in quartz enhanced photoacoustic sensing, Appl. Phys. Rev., 5, 011106, 10.1063/1.5013612
Ma, 2018, Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection, Opt. Express, 26, 32103, 10.1364/OE.26.032103
He, 2019, Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell, Opt. Lett., 44, 1904, 10.1364/OL.44.001904
Ma, 2020, Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork, Appl. Phys. Lett., 116, 011103, 10.1063/1.5129014
Cao, 2012, Optimization of spectrophone performance for quartz-enhanced photoacoustic spectroscopy, Sens. Actuators B Chem., 174, 24, 10.1016/j.snb.2012.08.014
Kosterev, 2010, QEPAS detector for rapid spectral measurements, Appl. Phys. B, 100, 173, 10.1007/s00340-010-3975-0
Wei, 2019, Acoustic detection module design of a quartz-enhanced photoacoustic sensor, Sensors, 19, 1093, 10.3390/s19051093
Chen, 2019, Low-cost quartz tuning fork based methane sensor for coal mine safety applications, Sens. Actuators B Chem., 295, 7, 10.1016/j.snb.2019.05.066
Hu, 2020, Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing, Opt. Lett., 45, 1894, 10.1364/OL.388754