The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fithian DC, Kelly MA, Mow VC: Material properties and structure-function relationships in the menisci. Clin Orthop. 1990, 252: 19-31.
Ahmed AM: The load-bearing role of the knee meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Jackson DW. 1992, New York: Raven Press, 59-73.
Levy IM, Torzilli PA, Fisch ID: The contribution of the menisci to the stability of the knee. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Jackson DW. 1992, New York: Raven Press, 107-115.
Fairbank T: Knee joint changes after menisectomy. J Bone Joint Surg. 1948, 30B: 664-670.
Cox JS, Nye CE, Schaefer WW, Woodstein IJ: The degenerative effects of partial and total resection of the medial meniscus in dogs' knees. Clin Orthop Relat Res. 1975, 109: 178-183.
Ibarra C, Koski JA, Warren RF: Tissue engineering meniscus: cells and matrix. Orthop Clin North Am. 2000, 31: 411-418. 10.1016/S0030-5898(05)70160-7.
Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H: Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop. 2001, 391 (Suppl): S208-S218.
Buma P, Ramrattan NN, van Tienen TG, Veth RPH: Tissue engineering of the meniscus. Biomaterials. 2004, 25: 1523-1532. 10.1016/S0142-9612(03)00499-X.
Adams SB, Randolph MA, Gill TJ: Tissue engineering for meniscus repair. J Knee Surg. 2005, 18: 25-30.
Sweigart MA, Athanasiou KA: Toward tissue engineering of the knee meniscus. Tissue Eng. 2001, 7: 111-129. 10.1089/107632701300062697.
Adams ME, Hukins DWL: The extracellular matrix of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Jackson DW. 1992, New York: Raven Press, 15-28.
McDevitt CA, Miller RR, Spindler KP: The cells and cell matrix interactions of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Jackson DW. 1992, New York: Raven Press, 29-36.
Tanaka T, Fujii K, Kumagae Y: Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg Sports Traumatol Arthrosc. 1999, 7: 75-80. 10.1007/s001670050125.
Watt FM: Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci. 1988, 89: 373-378.
Benya PD, Shaffer JD: Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982, 30: 215-224. 10.1016/0092-8674(82)90027-7.
Martin I, Vunjak-Novakovic G, Yang J, Langer R, Freed LE: Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp Cell Res. 1999, 253: 681-688. 10.1006/excr.1999.4708.
Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE: Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthritis Cartilage. 2005, 13: 80-89. 10.1016/j.joca.2004.10.011.
Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998, 238: 265-272. 10.1006/excr.1997.3858.
Murphy CL, Polak JM: Control of human articular chondrocyte differentiation by reduced oxygen tension. J Cell Physiol. 2004, 199: 451-459. 10.1002/jcp.10481.
Murphy CL, Sambanis A: Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 2001, 7: 791-803. 10.1089/107632701753337735.
Grimshaw MJ, Mason RM: Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthritis Cartilage. 2001, 9: 357-364. 10.1053/joca.2000.0396.
Webber RJ, Harris MG, Hough AJ: Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res. 1985, 3: 36-42. 10.1002/jor.1100030104.
Martin I, Suetterlin R, Baschong W, Heberer M, Vunjak-Novakovic G, Freed LE, Jakob M, Demarteau O, Schafer D, Hintermann B, et al: Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem. 2001, 83: 121-128. 10.1002/jcb.1203.
Al-Taher A, Bashein A, Nolan T, Hollingsworth M, Brady G: Global cDNA amplification combined with real-time RT-PCR: accurate quantification of multiple human potassium channel genes at the single cell level. Yeast. 2000, 17: 201-210. 10.1002/1097-0061(20000930)17:3<201::AID-YEA30>3.0.CO;2-R.
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Ratcliffe A, Doherty M, Maini RN, Hardingham TE: Increased concentrations of proteoglycan components in the synovial fluids of patients with acute but not chronic joint disease. Ann Rheum Dis. 1988, 47: 826-832.
Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883: 173-177.
Lefebvre V, Li P, de Crombrugghe B: A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998, 17: 5718-5733. 10.1093/emboj/17.19.5718.
Djurasovic M, Aldridge JW, Grumbles R, Rosenwasser MP, Howell D, Ratcliffe A: Knee joint immobilization decreases aggrecan gene expression in the meniscus. Am J Sports Med. 1998, 26: 460-466.
Messner K, Gao J: The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998, 193: 161-178. 10.1046/j.1469-7580.1998.19320161.x.
Scott PG, Nakano T, Dodd CM: Isolation and characterization of small proteoglycans from different zones of the porcine knee meniscus. Biochim Biophys Acta. 1997, 1336: 254-262.
Semenza GL: HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001, 13: 167-171. 10.1016/S0955-0674(00)00194-0.
Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P, Clemens TL: Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone. 2005, 37: 313-322. 10.1016/j.bone.2005.04.040.
Ebert BL, Bunn HF: Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol. 1998, 18: 4089-4096.
Tsuda M, Takahashi S, Takahashi Y, Asahara H: Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem. 2003, 278: 27224-27229. 10.1074/jbc.M303471200.
Mastrogiacomo M, Cancedda R, Quarto R: Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage. 2001, 9 (Suppl A): S36-S40. 10.1053/joca.2001.0442.