The matrix-forming phenotype of cultured human meniscus cells is enhanced after culture with fibroblast growth factor 2 and is further stimulated by hypoxia

Arthritis Research & Therapy - Tập 8 - Trang 1-9 - 2006
Adetola B Adesida1, Lisa M Grady1, Wasim S Khan1, Timothy E Hardingham1
1UK Centre for Tissue Engineering at The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, Michael Smith Building, The University of Manchester, Manchester, UK

Tóm tắt

Human meniscus cells have a predominantly fibrogenic pattern of gene expression, but like chondrocytes they proliferate in monolayer culture and lose the expression of type II collagen. We have investigated the potential of human meniscus cells, which were expanded with or without fibroblast growth factor 2 (FGF2), to produce matrix in three-dimensional cell aggregate cultures with a chondrogenic medium at low (5%) and normal (20%) oxygen tension. The presence of FGF2 during the expansion of meniscus cells enhanced the re-expression of type II collagen 200-fold in subsequent three-dimensional cell aggregate cultures. This was increased further (400-fold) by culture in 5% oxygen. Cell aggregates of FGF2-expanded meniscus cells accumulated more proteoglycan (total glycosaminoglycan) over 14 days and deposited a collagen II-rich matrix. The gene expression of matrix-associated proteoglycans (biglycan and fibromodulin) was also increased by FGF2 and hypoxia. Meniscus cells after expansion in monolayer can therefore respond to chondrogenic signals, and this is enhanced by FGF2 during expansion and low oxygen tension during aggregate cultures.

Từ khóa


Tài liệu tham khảo

Fithian DC, Kelly MA, Mow VC: Material properties and structure-function relationships in the menisci. Clin Orthop. 1990, 252: 19-31.

Ahmed AM: The load-bearing role of the knee meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Jackson DW. 1992, New York: Raven Press, 59-73.

Levy IM, Torzilli PA, Fisch ID: The contribution of the menisci to the stability of the knee. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Jackson DW. 1992, New York: Raven Press, 107-115.

Fairbank T: Knee joint changes after menisectomy. J Bone Joint Surg. 1948, 30B: 664-670.

Cox JS, Nye CE, Schaefer WW, Woodstein IJ: The degenerative effects of partial and total resection of the medial meniscus in dogs' knees. Clin Orthop Relat Res. 1975, 109: 178-183.

Ibarra C, Koski JA, Warren RF: Tissue engineering meniscus: cells and matrix. Orthop Clin North Am. 2000, 31: 411-418. 10.1016/S0030-5898(05)70160-7.

Nakata K, Shino K, Hamada M, Mae T, Miyama T, Shinjo H, Horibe S, Tada K, Ochi T, Yoshikawa H: Human meniscus cell: characterization of the primary culture and use for tissue engineering. Clin Orthop. 2001, 391 (Suppl): S208-S218.

Buma P, Ramrattan NN, van Tienen TG, Veth RPH: Tissue engineering of the meniscus. Biomaterials. 2004, 25: 1523-1532. 10.1016/S0142-9612(03)00499-X.

Adams SB, Randolph MA, Gill TJ: Tissue engineering for meniscus repair. J Knee Surg. 2005, 18: 25-30.

Sweigart MA, Athanasiou KA: Toward tissue engineering of the knee meniscus. Tissue Eng. 2001, 7: 111-129. 10.1089/107632701300062697.

Adams ME, Hukins DWL: The extracellular matrix of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Jackson DW. 1992, New York: Raven Press, 15-28.

McDevitt CA, Miller RR, Spindler KP: The cells and cell matrix interactions of the meniscus. Knee Meniscus: Basic and Clinical Foundations. Edited by: Mow VC, Jackson DW. 1992, New York: Raven Press, 29-36.

Tanaka T, Fujii K, Kumagae Y: Comparison of biochemical characteristics of cultured fibrochondrocytes isolated from the inner and outer regions of human meniscus. Knee Surg Sports Traumatol Arthrosc. 1999, 7: 75-80. 10.1007/s001670050125.

Watt FM: Effect of seeding density on stability of the differentiated phenotype of pig articular chondrocytes in culture. J Cell Sci. 1988, 89: 373-378.

Benya PD, Shaffer JD: Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982, 30: 215-224. 10.1016/0092-8674(82)90027-7.

Martin I, Vunjak-Novakovic G, Yang J, Langer R, Freed LE: Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp Cell Res. 1999, 253: 681-688. 10.1006/excr.1999.4708.

Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE: Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthritis Cartilage. 2005, 13: 80-89. 10.1016/j.joca.2004.10.011.

Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU: In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res. 1998, 238: 265-272. 10.1006/excr.1997.3858.

Murphy CL, Polak JM: Control of human articular chondrocyte differentiation by reduced oxygen tension. J Cell Physiol. 2004, 199: 451-459. 10.1002/jcp.10481.

Murphy CL, Sambanis A: Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 2001, 7: 791-803. 10.1089/107632701753337735.

Grimshaw MJ, Mason RM: Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthritis Cartilage. 2001, 9: 357-364. 10.1053/joca.2000.0396.

Webber RJ, Harris MG, Hough AJ: Cell culture of rabbit meniscal fibrochondrocytes: proliferative and synthetic response to growth factors and ascorbate. J Orthop Res. 1985, 3: 36-42. 10.1002/jor.1100030104.

Martin I, Suetterlin R, Baschong W, Heberer M, Vunjak-Novakovic G, Freed LE, Jakob M, Demarteau O, Schafer D, Hintermann B, et al: Enhanced cartilage tissue engineering by sequential exposure of chondrocytes to FGF-2 during 2D expansion and BMP-2 during 3D cultivation. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem. 2001, 83: 121-128. 10.1002/jcb.1203.

Al-Taher A, Bashein A, Nolan T, Hollingsworth M, Brady G: Global cDNA amplification combined with real-time RT-PCR: accurate quantification of multiple human potassium channel genes at the single cell level. Yeast. 2000, 17: 201-210. 10.1002/1097-0061(20000930)17:3<201::AID-YEA30>3.0.CO;2-R.

Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.

Ratcliffe A, Doherty M, Maini RN, Hardingham TE: Increased concentrations of proteoglycan components in the synovial fluids of patients with acute but not chronic joint disease. Ann Rheum Dis. 1988, 47: 826-832.

Farndale RW, Buttle DJ, Barrett AJ: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986, 883: 173-177.

Lefebvre V, Li P, de Crombrugghe B: A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 1998, 17: 5718-5733. 10.1093/emboj/17.19.5718.

Djurasovic M, Aldridge JW, Grumbles R, Rosenwasser MP, Howell D, Ratcliffe A: Knee joint immobilization decreases aggrecan gene expression in the meniscus. Am J Sports Med. 1998, 26: 460-466.

Messner K, Gao J: The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998, 193: 161-178. 10.1046/j.1469-7580.1998.19320161.x.

Scott PG, Nakano T, Dodd CM: Isolation and characterization of small proteoglycans from different zones of the porcine knee meniscus. Biochim Biophys Acta. 1997, 1336: 254-262.

Semenza GL: HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001, 13: 167-171. 10.1016/S0955-0674(00)00194-0.

Robins JC, Akeno N, Mukherjee A, Dalal RR, Aronow BJ, Koopman P, Clemens TL: Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone. 2005, 37: 313-322. 10.1016/j.bone.2005.04.040.

Ebert BL, Bunn HF: Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol. 1998, 18: 4089-4096.

Tsuda M, Takahashi S, Takahashi Y, Asahara H: Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J Biol Chem. 2003, 278: 27224-27229. 10.1074/jbc.M303471200.

Mastrogiacomo M, Cancedda R, Quarto R: Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthritis Cartilage. 2001, 9 (Suppl A): S36-S40. 10.1053/joca.2001.0442.