A hybrid particle approach for continuum and rarefied flow simulation

Journal of Computational Physics - Tập 228 - Trang 460-475 - 2009
Jonathan M. Burt1, Iain D. Boyd1
1Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, MI 48109, United States

Tài liệu tham khảo

Wijesinghe, 2004, Three-dimensional hybrid continuum-atomistic simulations for multiscale hydrodynamics, J. Fluids Eng., 126, 768, 10.1115/1.1792275 Roveda, 1998, Hybrid Euler/particle approach for continuum/rarefied flows, J. Spacecraft Rockets, 35, 258, 10.2514/2.3349 Roveda, 2000, Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow, J. Spacecraft Rockets, 37, 753, 10.2514/2.3647 W. Wang, I.D. Boyd, Hybrid DSMC–CFD simulations of hypersonic flow over sharp and blunted bodies, AIAA Paper 2003-3644, 2003. Schwartzentruber, 2006, A hybrid particle-continuum method applied to shock waves, J. Comput. Phys., 215, 402, 10.1016/j.jcp.2005.10.023 Schwartzentruber, 2007, A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows, J. Comput. Phys., 225, 1159, 10.1016/j.jcp.2007.01.022 D.C. Wadsworth, D.A. Erwin, Two-dimensional hybrid continuum/particle approach for rarefied flows, AIAA Paper 92-2975, 1992. Garcia, 1999, Adaptive mesh and algorithm refinement using direct simulation Monte Carlo, J. Comput. Phys., 154, 134, 10.1006/jcph.1999.6305 Kolobov, 2007, Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement, J. Comput. Phys., 223, 589, 10.1016/j.jcp.2006.09.021 Tiwari, 1998, An adaptive domain decomposition procedure for the Boltzmann and Euler equations, J. Comput. Appl. Math., 90, 223, 10.1016/S0377-0427(98)00027-2 M.N. Macrossan, A particle-only hybrid method for near-continuum flows, in: Proceedings of the 22nd International Symposium on Rarefied Gas Dynamics, American Institute of Physics, 2001, pp. 388–395. Bird, 1994 T.J. Bartel, T.M. Sterk, J.L. Payne, B. Preppernau, DSMC simulation of nozzle expansion flow fields, AIAA Paper 94-2047, 1994. E.V. Titov, M.I. Zeifman, D.A. Levin, Application of the kinetic and continuum techniques to the multi-scale flows in MEMS devices, AIAA Paper 2005-1399, 2005. K.S. Breuer, E.S. Piekos, D.A. Gonzales, DSMC simulations of continuum flows, AIAA Paper 95-2088, 1995. Macrossan, 1989, The equilibrium flux method for the calculation of flows with non-equilibrium chemical reactions, J. Comput. Phys., 80, 204, 10.1016/0021-9991(89)90095-8 Burt, 2008, A low diffusion particle method for simulating compressible inviscid flows, J. Comput. Phys., 227, 4653, 10.1016/j.jcp.2008.01.020 Boyd, 1995, Predicting failure of the continuum fluid equations in transitional hypersonic flows, Phys. Fluids, 7, 210, 10.1063/1.868720 Wang, 2003, Predicting continuum breakdown in hypersonic viscous flows, Phys. Fluids, 15, 91, 10.1063/1.1524183 J.A. Camberos, C.R. Schrock, R.J. McMullan, R.D. Branam, Development of continuum onset criteria with direct simulation Monte Carlo using Boltzmann’s H-theorem: review and vision, AIAA Paper 2006-2942, 2006. Sun, 2005, Evaluation of macroscopic properties in the direct simulation Monte Carlo method, J. Thermophys. Heat Transfer, 19, 329, 10.2514/1.12542 Dietrich, 1996, Scalar and parallel optimized implementation of the direct simulation Monte Carlo method, J. Comput. Phys., 126, 328, 10.1006/jcph.1996.0141 Boyd, 1992, Experimental and numerical investigations of low-density nozzle and plume flows of nitrogen, AIAA J., 30, 2453, 10.2514/3.11247 L.C. Scalabrin, I.D. Boyd, Development of an unstructured Navier–Stokes solver for hypersonic nonequilibrium aerothermodynamics, AIAA Paper 2005-5203, 2005.