Synthetic protein scaffolds provide modular control over metabolic flux

Nature Biotechnology - Tập 27 Số 8 - Trang 753-759 - 2009
John E. Dueber1, Gabriel C. Wu1, G. Reza Malmirchegini1, Tae Seok Moon2, Christopher J. Petzold3, Adeeti V Ullal4, Kristala L. J. Prather2, Jay D. Keasling5
1California Institute of Quantitative Biomedical Research (QB3), University of California, Berkeley, California, USA
2Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
3Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
4Department of Bioengineering, University of California, Berkeley, California, USA
5Synthetic Biology Engineering Research Center (SynBERC), University of California, Berkeley, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).

Nakamura, C.E. & Whited, G.M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003).

Khosla, C. & Keasling, J.D. Metabolic engineering for drug discovery and development. Nat. Rev. Drug Discov. 2, 1019–1025 (2003).

Harcum, S.W. & Bentley, W.E. Heat-shock and stringent responses have overlapping protease activity in Escherichia coli. Implications for heterologous protein yield. Appl. Biochem. Biotechnol. 80, 23–37 (1999).

Kizer, L., Pitera, D.J., Pfleger, B. & Keasling, J.D. Functional genomics for pathway optimization: application to isoprenoid production. Appl. Environ. Microbiol 74, 3229–3241 (2008).

Zhu, M.M., Lawman, P.D. & Cameron, D.C. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol. Prog. 18, 694–699 (2002).

Barbirato, F., Grivet, J.P., Soucaille, P. & Bories, A. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl. Environ. Microbiol. 62, 1448–1451 (1996).

Stephanopoulos, G. Metabolic fluxes and metabolic engineering. Metab. Eng. 1, 1–11 (1999).

Pitera, D.J., Paddon, C.J., Newman, J.D. & Keasling, J.D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in. Escherichia coli. Metab. Eng. 9, 193–207 (2007).

Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

Bloom, J.D. et al. Evolving strategies for enzyme engineering. Curr. Opin. Struct. Biol. 15, 447–452 (2005).

Miles, E.W., Rhee, S. & Davies, D.R. The molecular basis of substrate channeling. J. Biol. Chem. 274, 12193–12196 (1999).

Spivey, H.O. & Ovadi, J. Substrate channeling. Methods 19, 306–321 (1999).

Hyde, C.C., Ahmed, S.A., Padlan, E.A., Miles, E.W. & Davies, D.R. Three-dimensional structure of the tryptophan synthase alpha 2 beta 2 multienzyme complex from Salmonella typhimurium. J. Biol. Chem. 263, 17857–17871 (1988).

Thoden, J.B., Holden, H.M., Wesenberg, G., Raushel, F.M. & Rayment, I. Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry 36, 6305–6316 (1997).

Conrado, R.J., Varner, J.D. & DeLisa, M.P. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. Curr. Opin. Biotechnol. 19, 492–499 (2008).

Mosbach, K. & Mattiasson, B. Matrix-bound enzymes. II. Studies on a matrix-bound two-enzyme-system. Acta Chem. Scand. 24, 2093–2100 (1970).

Bulow, L. Characterization of an artificial bifunctional enzyme, beta-galactosidase/galactokinase, prepared by gene fusion. Eur. J. Biochem. 163, 443–448 (1987).

Bulow, L., Ljungcrantz, P. & Mosbach, K. Preparation of a soluble biofunctional enzyme by gene fusion. Bio/Technology 3, 821–823 (1985).

Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

Nagar, B. et al. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112, 859–871 (2003).

Prehoda, K.E., Scott, J.A., Mullins, R.D. & Lim, W.A. Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801–806 (2000).

Dueber, J.E., Yeh, B.J., Bhattacharyya, R.P. & Lim, W.A. Rewiring cell signaling: the logic and plasticity of eukaryotic protein circuitry. Curr. Opin. Struct. Biol. 14, 690–699 (2004).

Dueber, J.E., Yeh, B.J., Chak, K. & Lim, W.A. Reprogramming control of an allosteric signaling switch through modular recombination. Science 301, 1904–1908 (2003).

Dueber, J.E., Mirsky, E.A. & Lim, W.A. Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat. Biotechnol. 25, 660–662 (2007).

Levchenko, A., Bruck, J. & Sternberg, P.W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97, 5818–5823 (2000).

Werpy, T. & Petersen, G. Top value added chemicals from biomass. vol. I: Results of screening for potential candidates from sugars and synthesis gas (US Dept. of Energy, Oak Ridge, Tennessee and Dept. of Commerce, Springfield, Virginia; 2004). 〈 http://www.pnl.gov/main/publications/external/technical_reports/PNNL-14808.pdf 〉.

Moon, T.S., Yoon, S.H., Lanza, A.M., Roy-Mayhew, J.D. & Prather, K.L. Production of glucaric acid from a synthetic pathway in recombinant Escherichia coli. Appl. Environ. Microbiol. 75, 589–595 (2009).

Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

Bashor, C.J., Helman, N.C., Yan, S. & Lim, W.A. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543 (2008).

Howard, P.L., Chia, M.C., Del Rizzo, S., Liu, F.F. & Pawson, T. Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins. Proc. Natl. Acad. Sci. USA 100, 11267–11272 (2003).

Yeh, B.J., Rutigliano, R.J., Deb, A., Bar-Sagi, D. & Lim, W.A. Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447, 596–600 (2007).

Lee, S.K., Newman, J.D. & Keasling, J.D. Catabolite repression of the propionate catabolic genes in Escherichia coli and Salmonella enterica: evidence for involvement of the cyclic AMP receptor protein. J. Bacteriol. 187, 2793–2800 (2005).

Shetty, R.P., Endy, D. & Knight, T.F. Jr. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

Hillier, B.J., Christopherson, K.S., Prehoda, K.E., Bredt, D.S. & Lim, W.A. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284, 812–815 (1999).

Khlebnikov, A., Datsenko, K.A., Skaug, T., Wanner, B.L. & Keasling, J.D. Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247 (2001).

Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protocols 1, 2856–2860 (2006).