Geometric control theory
Tài liệu tham khảo
V. A. Agladze and Yu. P. Ponomarev, “The group-theoretic approach to the analysis of controllable dynamical systems,” Kibernetika, (Kiev), No. 25, 8–11 (1984)
A. A. Agrachev, “A necessary condition for second-order optimality in the general nonlinear case,” Mat. Sb.,102, No. 4, 551–568 (1977).
A. A. Agrachev, “Necessary and sufficient extremal conditions for smooth controllable systems,” ICM Warsaw, Short Communications XII, Section 14: Control theory and optimization, p. 29 (1982).
A. A. Agrachev and S. A. Vakhrameev, “Chronological series and the Cauchy-Kovalevskaya theorem,” in: Problems of geometry. Vol. 12, Itogi nauki i tekhn. All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 165–189 (1981).
A. A. Agrachev and S. A. Vakhrameev, “Nonlinear control systems of constant rank and bang-bang conditions for extremal controls,” Dokl. Akad. Nauk SSSR,279, No. 2, 265–269 (1984).
A. A. Agrachev and S. A. Vakhrameev, “Control-linear systems of constant rank and bang-bang conditions for extremal controls,” Uspekhi Mat. Nauk (in press).
A. A. Agrachev, S. A. Vakhrameev, and R. V. Gamkrelidze, “Differential-geometric and group-theoretic methods in optimal control theory,” in: Problems of Geometry. Vol. 14, Itogi nauki i tekhn. All-Union Institute for Scientific and Technical Information (VINITI), Akad. Nauk SSSR, Moscow, 3–56 (1983).
A. A. Agrachev and R. V. Gamkrelidze, “The principle of second-order optimality for a time-optimal problem,” Mat. Sb.,100, No. 4, 610–643 (1976).
A. A. Agrachev and R. V. Gamkrelidze, “Exponential representation of currents and the chronological calculus,” Mat. Sb.,107, No. 4, 467–532 (1978).
A. A. Agrachev and R. V. Gamkrelidze, “Chronological algebras and nonstationary vector fields,” in: Problems of geometry. Vol. 11, Itogi nauki i tekhn. All-Union Institute for Scientific and Technical Information (VINITI) Akad. Nauk SSSR, Moscow, 135–176 (1980).
A. A. Agrachev and R. V. Gamkrelidze, “The index of extremality and quasi-extremality,” Dokl. Akad. Nauk SSSR (1985) (in press).
A. A. Agrachev and R. V. Gamkrelidze, “The Morse and Maslov indices for extremals of controllable systems,” Dokl. Akad. Nauk SSSR (1985) (in press).
A. A. Agrachev and A. V. Sarychev, “On the reduction of a smooth linear control system,” Mat. Sb. (in press).
M. Kh. Aizenshtein and M. I. Shpil'berg, “On the structure of orbits of piecewise linear action of a control group.” in: “Questions of group theory and homological algebra,” Yaroslavl', 70–73 (1983).
Yu. N. Andreev, “Differential-geometric methods in control theory,” Avtomat. i Telemekh.,10, 5–46 (1982).
A. P. Andryushchenko, “Controllability of a quantum antiharmonic oscillator,” Avtomatika (Kiev), No. 2, 66–74 (1984).
A. P. Andryushchenko, “Controllability of a three-level quantum system in strong fields,” Avtomatika (Kiev), No. 5, 38–42 (1984).
V. I. Arnol'd, “Mathematical methods of classical mechanics,” Nauka, Moscow (1974).
S. V. Belikov and S. N. Samborskii, “Regions of attainability for systems described by partial differential equations,” Sib. Mat. Zh.,24, No. 4, 3–12 (1983).
I. F. Boretskii and V. G. Pavlov, “On some properties of dynamical systems connected with their symmetry,” Kibernet. i Vychisl. Tekh. (Kiev), No. 47, 25–34 (1980).
V. N. Brandin and Yu. M. Kostyukovskii, “Global conditions for observability of nonlinear dynamical systems,” Avtomat. i Telemekh., No. 10, 18–25 (1975).
V. N. Brandin and G. N. Razorenov, “Decomposability conditions for nonlinear dynamical systems,” Avtomat. i Telemekh., No. 12, 5–12 (1976).
A. G. Butkovskii “A differential-geometric method for the constructive solution of controllability and finite control problems,” Avtomat. i Telemekh., No. 1, 5–18 (1982).
Dzh. Varga, “Optimal control of differential and functional equations,” Nauka, Moscow (1977).
V. P. Viflyantsev, “On the integrability of distributions with singularities,” Mat. Zametki,26, No. 6, 921–929 (1979).
R. V. Gamkrelidze, “Foundations of optimal control,” IzdatePstvo Tbilis. Univ., Tbilisi (1977).
K. G. Garaev, “Methods of the theory of Lie groups of transformations in the problem of reduction of optimal processes,” in: “Complex control systems,” Kiev, 18–27 (1978).
A. A. Davydov, “Singularities of the boundary of attainability in two-dimensional controllable systems,” Uspekhi Mat. Nauk,37, No. 3, 183–184 (1982).
A. A. Davydov, “Quasi-Lipschitz conditions on the boundary of attainability,” MGU Moscow (1982).
A. A. Davydov, “The boundary of attainability of a multi-dimensional controllable system,” Tr. Tbilis. Univ., No. 232–233, 78–96 (1982).
P. I. Dudnikov and S. N. Samborskii, “A controllability criterion for systems in a Banach space,” Sib. Mat. Zh.,25, 649–653 (1980).
V. I. Elkin, “Some questions of aggregation of controllability of dynamical systems,” in: “Proceedings of the 21st scientific conf. of the Moscow Physico-Technical Institute, 1975, Ser. Aerophysics and applied mathematics,” Dolgoprudnyi, 180–183 (1976).
V. I. Elkin, “On an algebraic method for studying controllable dynamical systems,” in: Proceedings of the 22nd scientific conf. of the Moscow Physico-Technical Institute, 1976, Ser. Aerophysics and applied mathematics,” Dolgoprudnyi, 191–194 (1977).
V. I. Elkin, “Invariance of controllable systems,” in: “Proceedings of the 23rd scientific conf. of the Moscow Physico-Technical Institute, 1977, Ser. Aerophysics and applied mathematics,” Dolgoprudnyi, 155–157 (1978).
V. I. Elkin, “On aggregation conditions for controllable dynamical systems,” Zh. vychisl. mat. i mat. fiz.,18, No. 4, 928–934 (1978).
V. I. Elkin, “An algebraic approach in the theory of invariance of controllable systems,” in: “Complex control systems,” Kiev, 21–32 (1979).
V. I. Elkin, “Realization, invariance, and autonomy of nonlinear controllable systems,” Avtomat. i Telemekh., No. 7, 36–44 (1981).
V. I. Elkin, “Synthesis of perturbation-invariant nonlinear controllable dynamical systems,” Kibernet. i vychisl. tekhn. (Kiev), No. 51, 32–41 (1981).
V. I. Elkin, “Observable realization of nonlinear dynamical systems,” Kibernet. i vychisl. tekhn. (Kiev), No. 54, 39–45 (1982).
V. I. Elkin, “Transformation groups and controllable systems,” Kibernet. i vychisl. tekhn. (Kiev), No. 58, 22–27 (1983).
V. I. Elkin, “Methods of algebra and geometry in control theory. Controllable dynamical systems,” VTs Akad. Nauk SSSR, Moscow (1984).
V. I. Elkin, “On a differential-geometric approach to the study of partial differential equations,” Kibernet. i vychisl. tekhn. (Kiev), No. 62, 38–43 (1984).
V. I. Elkin, Yu. N. Pavlovskii, A. N. Chernoplekov, and G. N. Yakovenko, “Factorization problems for controllable dynamical systems and certain of their applications,” in: “Group-theoretic methods in mechanics. Proceedings of the International Symposium, Novosibirsk, 1978,” Novosibirsk, 108–117 (1978).
A. A. Zhevnin and A. P. Krishchenko, “Controllability of nonlinear systems and the synthesis of control algorithms,” Dokl. Akad. Nauk SSSR,258, No. 4, 805–809 (1981).
A. A. Zhevnin, A. P. Krishchenko, and Yu. V. Glushko, “Controllability and observability of nonlinear systems,” in: “Analytic methods of synthesis of regulators,” Saratov, 3–11 (1981).
A. A. Zhevnin, A. P. Krishchenko, and Yu. V. Glushko, “Controllability and observability of nonlinear systems and synthesis of terminal control,” Dokl. Akad. Nauk SSSR,266, No. 4, 807–811 (1982).
A. D. Ioffe and V. M. Tikhomirov, “Theory of extremal problems,” Nauka, Moscow (1974).
V. V. Kiselev, “On the number of switchings in a time-optimal problem for bilinear systems,” in: “Optimality and control of mechanical systems,” Leningrad, 16–22 (1983).
A. P. Krishchenko, “Controllability of nonlinear systems and the structure of their sets of attainability,” Tr. MVTU, No. 398, 108–114 (1983).
A. P. Krishchenko, “The study of controllability and sets of attainability of nonlinear control systems,” Avtomat. i Telemekh., No. 6, 30–36 (1984).
A. P. Krishchenko, “Controllability and sets of attainability of nonlinear nonstationary systems,” Kibernet. i vychisl. tekhn. (Kiev), No. 62, 3–10 (1984).
S. A. Kutepov, “On families of diffeomorphisms of control-linear systems,” in: “Proceedings of the 25th Scientific conf. of the Moscow Physico-Technical Institute, 1979, Ser. Aerophysics and applied mathematics,” Moscow, 131–133 (1980).
S. A. Kutepov, “On tangential approximations of sets of attainability of linear-analytic systems,” Kibernet. i vychisl. tekh. (Kiev), No. 51, 22–29 (1981).
S. A. Kutepov, “Absolute stability of bilinear systems with a compact Levi factor,” Kibernet. i vychisl. tekhn. (Kiev), No. 62, 28–33 (1984).
S. A. Kutepov and G. N. Yakovenko, “Group-theoretic aspects of optimal control,” Kibernet. i vychisl. tekhn. (Kiev), No. 58, 28–35, (1983).
A. I. Kukhtenko, “On the axiomatic construction of the mathematical theory of systems,” Kibernet. i vychisl. tekhn. Resp. mezhved. sb., No. 31, 3–25 (1976).
A. I. Kukhtenko, “The theory of algebraic invariants in problems of automatic control,” Kibernet. i vychisl. tekhn. Resp. mezhved. sb., No. 39, 3–16 (1978).
A. I. Kukhtenko, “What can ‘abstract systems theory’ contribute to the science of control?” Avtomatika (Kiev), No. 4, 3–14 (1979).
A. I. Kukhtenko, “On the abstract theory of controllable dynamical systems,” in: “Cybernetic methods of planning, projection, and control,” Kiev, 93–106 (1982).
A. I. Kukhtenko, “Abstract systems theory (AST) and applied studies,” Kibernet. i vychisl. tekhn. (Kiev), No. 54, 3–9 (1982).
A. I. Kukhtenko, V. N. Semenov, and V. V. Udilov, “Geometric and abstract-algebraic methods in the theory of automatic control,” Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 27, 3–20 (1975).
E. B. Lee and L. Markus, “Foundations of optimal control theory,” John Wiley & Sons, New York (1967).
A. M. Meilakhs, “On stabilization of nonlinear controllable systems,” Différents. Uravneniya,12, No. 3, 1313–1315 (1976).
A. M. Meilakhs, “On the orientation of an inert rigid body,” Différents. Uravneniya,12, No. 11, 2101 (1976).
A. M. Meilakhs, “On the bang-bang stabilization of nonlinear controllable systems,” Différents. Uravneniya,13, No. 7, 1333–1334, (1977).
V. M. Mikhalevich, “The problem of optimal control on a manifold,” Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 39, 94–98 (1978).
V. M. Mikhalevich and V. A. Yatsenko, “A bilinear logico-dynamical model for a controllable process,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 36–39 (1982).
A. Ya. Narmanov, “On the structure of the set of controllability of continuously balanced control systems,” Vest. LGU, No. 13, 50–55 (1981).
A. Ya. Narmanov, “On the sets of controllability of control systems that are strata of a stratification of codimension 1,” Différents. Uravneniya,19, No. 9, 1627–1630 (1983).
V. G. Pavlov, “Systems invariant with respect to groups of transformations,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 58, 17–22 (1983).
Yu. N. Pavlovskii, “Group properties of controllable dynamical systems and phase organizational structures. I. Groups characterizing dynamical systems,” Zh. Vychisl. Mat. i Mat. Fiz.,14, No. 4, 862–872 (1974).
Yu. N. Pavlovskii, “Group properties of controllable dynamical systems and phase organizational structures. II. Phase organizational structures,” Zh. Vychisl. Mat. i Mat. Fiz.,14, No. 5, 1093–1103 (1974).
Yu. N. Pavlovskii, “Aggregation, decomposition, group properties, and decomposition structures of dynamical systems,” Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 39, 3–16 (1978).
Yu. N. Pavlovskii, “Methods of factorization and decomposition in systems theory,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 9–15 (1982).
Yu. N. Pavlovskii, “Control of decomposition structures,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 58, 11–16 (1983).
Yu. N. Pavlovskii, “The theory of factorization and decomposition of controllable dynamical systems and its applications,” Izv. Akad. Nauk SSSR. Tekhn. Kibernetika, No. 2, 45–47 (1984).
Yu. N. Pavlovskii and G. N. Yakovenko, “Groups admitted by dynamical systems,” in: “Optimization methods and their applications,” Novosibirsk, 155–189 (1982).
N. N. Petrov, “On local controllability,” Differents. Uravneniya,12, No. 12, 2214–2222 (1976).
N. N. Petrov, “A remark on plane analytic control systems,” Differents. Uravneniya”,15, No. 4, 743–744 (1979).
N. N. Petrov, “On symmetric completely controllable control systems,” Differents. Uravneniya,15, No. 11, 1980–1986 (1979).
N. N. Petrov, “Controllable systems and stratification theory,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 58, 8–11 (1983).
M. A. Pinskii, “On the equivalence of controllable systems with continuous symmetry group,” Différents. Uravneniya,18, No. 6, 1089–1091 (1982).
M. A. Pinskii, “On a group criterion for equivalence of controllable dynamical systems,” in: “Studies in the theory of multiply connected systems,” Moscow, 55–60 (1982).
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, “Mathematical theory of optimal processes,” Nauka, Moscow (1969).
K. A. Pupkov and E. B. Frolov, “On an attainability property of nonlinear systems on manifolds. I,” Izv. Vuzov., Mat., No. 10, 61–71 (1978).
B. N. Pshenichnyi and V. M. Mikhalevich, “The problem of optimal control on a manifold,” Dokl. Akad. Nauk Uk.SSR, A, No. 1, 70–73 (1978).
A. V. Rudenko, “Differential topology methods in the problem of local controllability,” in: “Complex control systems,” Kiev, 16–26 (1980).
A. V. Rudenko, “On a representation of the sets of attainability of nonlinear systems,” Avtomatika (Kiev), No. 5, 42–48 (1980).
A. V. Rudenko and V. N. Semenov, “Smooth branches of multi-valued mappings in the problem of local controllability,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 62, 21–28 (1984).
S. N. Samborskii, “Involutive differential systems in a Banach space and sets of attainability for controllable systems,” Ukr. Mat. Zh.,33, No. 2, 220–226 (1981).
A. V. Sarychev, “Stability of mappings of Hubert space and equivalence of controllable systems,” Mat. Sb.,113, No. 1, 146–160 (1980).
A. V. Sarychev, “The index of second variation of a controllable system,” Mat. Sb.,113, No. 3, 464–486 (1980).
V. N. Semenov, “Toward a geometric theory of control systems. Part I,” in: “Technical Cybernetics, No. 16,” Kiev, 100–108 (1970).
V. N. Semenov, “Toward a geometric theory of control systems. Part II,” in: “Technical Cybernetics, No. 16,” Kiev, 109–120 (1970).
V. N. Semenov, “On controllability of nonlinear dynamical systems,” Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., issue 8, 34–40 (1971).
V. N. Semenov, “On certain abstract-algebraic models and methods of studying dynamical systems,” Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., issue 23, 33–40 (1974).
V. N. Semenov, “The algebraic structure of smooth dynamical control systems,” in: “Complex control systems,” Kiev, 3–15 (1974).
V. N. Semenov, “Dynamical control systems on smooth manifolds,” Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 31, 36–44 (1976).
V. N. Semenov, “On the geometric aspects of controllability,” in: “Complex control systems,” Kiev, No. 4, 3–11 (1977).
V. N. Semenov, “Differential-geometric methods of studying controllable dynamical systems,” Kibernet. i Vychisl. Tekhn., Resp., Mezhved. Sb., No. 39, 63–71 (1978).
I. M. Semenov, “On the controllability of the equation x=ux,” Mat. Zametki,23, No. 2, 253–259 (1978).
T. G. Smirnova, “On partial aggregation and partially admissible groups,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 31–35 (1982).
K. E. Starkov, “On the observability of smooth dynamical systems,” in: “Modelling and optimization of complex control systems,” Moscow, 50–55 (1981).
K. E. Starkov, “Synthesis of observation functions for certain classes of dynamical systems,” Avtomat. i Telemekh., No. 5, 90–97 (1982).
V. V. Udilov, “A group-theoretic approach to problems of autonomy, invariance, and sensitivity in controllable dynamical systems,” Kibernet. i Vychisl. Tekh., Resp. Mezhved. Sb., No. 39, 72–83 (1978).
A. Yu. Fedorov, “Controllability conditions for nonlinear dynamical systems,” Avtomat. i Telemekh., No. 4, 60–71 (1984).
E. B. Frolov, “The dimension of the region of attainability of nonlinear systems on a manifold and a criterion for attainability,” A collection of articles from the journal, “Differents. Uravneniya,” Akad. Nauk BSSR, Minsk (1980).
E. B. Frolov and G. A. Fomin, “Local attainability of nonlinear systems,” Differents. Uravneniya,19, No. 11, 1897–1902 (1983).
A. S. Khokhlov, “Controllability on a jet manifold,” in: “Complex control systems,” Kiev, 26–38 (1980).
A. S. Khokhlov, “Controllability of nonlinear systems and the Frobenius theorem,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 62, 42–43 (1984).
A. K. Chernoplekov, “Algebraic aspects of the factorization of dynamical systems,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 51, 20–31 (1980).
A. K. Chernoplekov, “Factorization of variational systems,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 45–51 (1982).
G. N. Yakovenko, “Optimal processes on differential manifolds and continuous groups,” Proceedings of the 17th scientific conference of the Moscow physico-technological institute, 1971. Series “Aerophysics and applied mathematics,” Dolgoprudnyi, 73–80 (1972).
G. N. Yakovenko, “A necessary condition for controllability,” in: “Questions of applied mathematics,” Irkutsk, 108–119 (1975).
G. N. Yakovenko, “An invariance criterion for controllable systems,” in: “Optimization methods and the study of operations. Applied mathematics,” Irkutsk, 71–78 (1976).
G. N. Yakovenko, “A group approach to controllability and invariance of dynamical systems,” Kibernet. i Vychisl. Tekhn., Resp. Mezhved. Sb., No. 39, 26–39 (1978).
G. N. Yakovenko, “On the group approach to the problem of invariance of systems with control,” in: “Dynamics of controllable systems,” Novosibirsk, 329–335 (1979).
G. N. Yakovenko, “Synthesis of optimal control on a Lie group of third order,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 51, 17–22 (1981).
G. N. Yakovenko, “On the equivalence of mathematical models of ‘input-output’ type,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 54, 15–20 (1982).
G. N. Yakovenko, “Control on Lie groups: first integrals, singular controls,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 62, 10–20 (1984).
V. A. Yatsenko, “The Euler equation on Lie groups and optimal control of bilinear systems,” Kibernet. i Vychisl. Tekhn. (Kiev), No. 58, 78–80 (1983).
Dire Ayels, “Generic observability of differentiable systems,” SIAM J. Control and Optimiz.,19, No. 5, 595–603 (1981).
Dirc Ayels, “Controllability for polynomial systems,” Lect. Notes Contr. and Inf. Sci.,63, 542–545 (1984).
A. A. Agrachev and A. V. Sarychev, “The control of rotation for asymmetric rigid body,” Probl. upr. i teorii inf., (VNR),12, No. 5, 335–347 (1983).
F. Albrecht, K. A. Gasse, and N. Wax, “Reproducibility of linear and nonlinear input-output systems,” J. Math. Anal, and Appl.,79, No. 1, 178–202 (1981).
James T. Aslanis, and Kenneth A. Loparo, “Control of variable structure systems in the plane,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 3, New York, N. Y., 1132–1137 (1983).
Andrea Bacciotti, “Sulla continuità della funzione di tempo minimo,” Boll, unione mat. ital.,B15, No. 3, 859–868 (1978).
Andrea Bacciotti, “Structure métrique des orbites de familles de champs de vecteurs et théorie du temps minimum,” SIAM J. Contr. and Optim.,17, No. 2, 311–319 (1979).
Andréa Bacciotti, “Una nota su ottimalità e estremalità,” Boll, unione mat. ital.,B18, No. 1, 285–294 (1981).
Andrea Bacciotti, “Controlled periodic solutions of affine systems with recurrent free part,” Ric. Autom.,12, No. 1, 28–32 (1981).
Andrea Bacciottiand G. Stefani, “Self-accessibility of a set with respect to a multivalued field,” J. Optimiz. Theory and Appl.,31, No. 4, 535–552 (1980).
Andrea Bacciotti and G. Stefani, “The region of attainability of nonlinear systems with unbounded controls,” J. Optimiz. Theory and Appl.,35, No. 1, 57–84 (1981).
Andrea Bacciottiand G. Stefani, “On the relationship between global and local controllability,” Math. Syst. Theory,16, No. 1, 79–91 (1983).
J. Baillieul, “Geometric methods for nonlinear optimal control problems,” J. Optimiz. Theory and Appl.,25, No. 4, 519–548 (1978).
J. Baillieul, “The geometry of homogeneous polynomial dynamical systems,” Nonlinear Anal.: Theory, Meth., and Appl.,4, No. 5, 879–900 (1980).
J. Baillieul, “Controllability and observability of polynomial dynamical systems,” Nonlinear Anal.: Theory, Meth., and Appl.,5, No. 5, 543–552 (1981).
Safya Belghith and Marie-Minerve Rosset, “Application des crochets de Lie à un problème de régulation thermique,” C. r., Acad. sci., sér. 1,299, No. 16, 811–814 (1984).
D. J. Bell and D. H. Jacobson, “Singular optimal control problems,” Academic Press, London (1975).
M. P. Bendsoe, “On the existence of observable single-input systems of a simple type,” SIAM J. Contr. and Optim.,19, No. 4, 555–559 (1981).
Tiberio R. M. Bianchini, “Sul principio del bang-bang per processi di controllo bilineari affini,” Matematiche,32, No. 1, 119–125 (1977).
Tiberio R. M. Bianchini and G. Stefani, “Multivalued fields and control systems with unbounded controls,” Ric. automat.,12, No. 1, 33–49 (1981).
Tiberio R. M. Bianchini and P. Zecca, “Local controllability for autonomous nonlinear systems,” J. Optimiz. Theory and Appl., No. 1, 69–83 (1980).
Tiberio R. M. Bianchini and P. Zecca, “On the attainable set at timeT for multivalued differential equations,” Nonlinear Anal.: Theory, Meth. and Appl.,5, No. 10, 1053–1059 (1981).
B. Bonnard, “Contrôlabilité des systèmes non-linéaires,” C. r., Acad. sci., sér. 1,292, No. 10, 535–537 (1981).
B. Bonnard, “Contrôlabilité des systèmes bilinéaires,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, 229–243, Paris (1981).
B. Bonnard, “Contrôlabilité des systèmes bilinéaires,” Math. Syst. Theory,15, No. 1, 79–92 (1981).
B. Bonnard, “Remarques sur les extrémales singulières en contrôle en temps minimal,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, 519–531, Paris (1983).
B. Bonnard, “Contrôle de l'attitude d'un satellite rigide,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, 649–658, Paris (1983).
B. Bonnard, “Contrôlabilité des systèmes mécaniques sur les groupes de Lie,” SIAM J. Contr. and Optim.,22, No. 5, 711–722 (1984).
William M. Boothby, “Some comments on positive orthant controllability of bilinear systems,” SIAM J. Contr. and Optim.,20, No. 5, 634–644 (1982).
William M. Boothby, “Some comments on global linearization of nonlinear systems,” Syst. and Contr. Lett.,4, No. 3, 143–147 (1984).
William M. Boothby and E. N. Wilson, “Determination of the transitivity of bilinear systems,” SIAM J. Contr. and Optim.,17, No. 2, 212–221 (1979).
R. W. Brockett, “Differential-geometric methods in systems theory,” IEEE Conf. Decis. and Contr. (Incl. 10th Symp. Adapt. Process), Miami Beach, Fla. 1971, New York, N. Y., 176–180 (1971).
R. W. Brockett, “System theory on group manifolds and coset spaces,” SIAM J. Contr.10, No. 2, 265–284 (1972).
R. W. Brockett, “The synthesis of dynamical systems,” Quart. Appl. Math.,30, No. 1, 41–50 (1972).
R. W. Brockett, “Lie algebras and Lie groups in control theory,” Geometr. Meth. Syst. Theory, Dordrecht-Boston, 43–82 (1973).
R. W. Brockett, “Lie theory and control systems defined on spheres,” SIAM J. Appl. Math.,25, No. 2, 213–225 (1973).
R. W. Brockett, “On the reachable set for bilinear systems,” Lect. Notes Econ. and Math. Syst.,111, 54–63 (1975).
R. W. Brockett, “Volterra series and geometric control theory,” Automatica,12, No. 2, 167–176 (1976).
R. W. Brockett, “Functional expansions and higher order necessary conditions in optimal control,” Lect. Notes Econ. and Math. Syst.,131, 111–121 (1976).
R. W. Brockett, “Finite and infinite dimensional bilinear realizations,” J. Franklin Inst.,301, No. 6, 509–520 (1976).
R. W. Brockett, “Lie theory, functional expansions and necessary conditions in singular optimal control,” Lect. Notes Math.,680, 68–76 (1978).
R. W. Brockett, “Feedback invariants for nonlinear systems,” Prepr. 7th World Congress IFAC, V. 2, Pergamon Press, Oxford, 1115–1120 (1978).
R. W. Brockett, “The global description of locally linear systems,” Lect. Notes Contr. and Inf. Sci.,39, 1–8 (1982).
R. W. Brockett, “Control theory and singular Riemannian geometry,” New Dir. Appl. Math., New York, 11–27 (1982).
R. W. Brockett, “Asymptotic stability and feedback stabilization,” Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ. June 28–July 2, 1982, Boston, 181–191 (1983).
R. W. Brockett and Paul A. Fuhrmann, “Normal symmetric dynamical systems,” SIAM J. Contr. and Optim.,14, No. 1, 107–119 (1976).
R. W. Brockett and H. J. Sussmann, “Tangent bundles of homogeneous spaces are homogeneous spaces,” Proc. Amer. Math. Soc.,35, No. 2, 550–551 (1972).
Pavol Brunovský, “Local controllability of odd systems,” Banach Center Publ., Vol. 1, Proc. Conf. Zakapone, 1974, Warszawa PWN, 39–45 (1976).
Pavol Brunovsky, “Integrability of families of vector fields and controllability,” Simp, geometrie si analizä globala, GH, Titeica si d. Pompeiu, Bucuresti, 1973, Acad. RSR, 269–270 (1976).
Pavol Brunovsky, “Existence of regular synthesis for general control problems,” J. Differ. Equat.,38, No. 3, 317–434 (1980).
Pavol Brunovsky, “On the structure of optimal feedback system,” Proc. Int. Congr. Math. Helsinki, 15–23 Aug. 1978, Vol. 2, 841–846, Helsinki (1980).
Pavol Brunovsky and Claude Lobry, “Contrôlabilité bang-bang, contrôlabilité différentiable, et perturbation des systèmes non-linéaires,” Ann. mat. pura ed appl.,105, 93–119 (1975).
C. I. Byrnes, “Toward a global theory of (f,g)-invariant distributions with singularities,” Lect. Notes Contr. and Inf. Sci.,58, 149–165 (1984).
C. I. Byrnes, “Control theory, inverse spectral problems, and real algebraic geometry,” Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ., June 28–July 2, 1982, Boston, 192–208 (1983).
C. I. Byrnes and B. D. C. Anderson, “Output feedback and generic stabilizability,” SIAM J. Contr. and Optim.,22, No. 3, 362–380 (1984).
C. I. Byrnes and A. J. Krener, “On the existence of globally (f, g)-invariant distributions,” Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ., June 28–July 2, 1982, Boston, 209–225 (1983).
J. L. Casti, “Recent developments and future perspectives in nonlinear system theory,” SIAM Review,24, No. 2, 301–331 (1982).
W. L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung,” Math. Ann.,117, 98–105 (1939).
D. Claude, “Découplage des systèmes nonlinéaires analytiques ou rejet des perturbations,” C. r. Acad. sci., sér. 1,292, No. 1, 59–62 (1981).
D. Claude, “Decoupling of nonlinear systems,” Syst. and Contr. Lett.,2, No. 5, 242–248 (1982).
D. Claude and E. Bernard-Weil, “Découplage et immersion d'un modèle neuroendocrinien,” C. r. Acad. sci., sér. 1,299, No. 5, 129–132 (1984).
D. Claude, M. Fliess, and A. Isidori, “Immersion, directe et par bouclage, d'un système non-linéaire dans un linéaire,” C. r. Acad. sci., sér. 1,296, No. 4, 237–240 (1983).
C. Commault and J. M. Dion, “Les sous-espaces (A, B)-invariantes et les sous-éspaces de commandabilité,” Outils et modèles math, autom. Anal. syst. et trait, signal.. Vol. 1, Paris, 19–37 (1981).
R. Conti, “Sul principio dell bang-bang per i processi di controllo bilineari,” Matematiche,30, No. 2, 363–371 (1975).
R. Conti, “On global controllability,” Int. Conf. Diff. Equat., 1974, New York, 203–228 (1975).
R. Conti, “On relay controllability for a bilinear process,” Differential equations, 32–36, Stockholm (1977).
P. E. Crouch, “Realization theory for dynamical systems,” Proc. Inst. Elec. Eng.,126, No. 6, 605–615 (1979).
P. E. Crouch, “Dynamical realizations of finite Volterra series,” Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Process, Albuquerque, N. M., 1980, Vol. 2, New York, 1122–1127 (1980).
P. E. Crouch, “Dynamical realization of finite Volterra series,” SIAM J. Contr. and Optim.,18, No. 4, 621–623 (1980).
P. E. Crouch, “Polynomic systems theory. A review,” Proc. Inst. Elec. Eng.,127, No. 5, 220–228 (1980).
P. E. Crouch, “Solvable approximations to control systems,” SIAM J. Contr. and Optim.,22, No. 1, 40–54 (1984).
P. E. Crouch, “Spacecraft attitude control and stabilization: application of geometric control to rigid body model,” IEEE Trans. Autom. Contr.,29, No. 4, 321–331 (1984).
P. E. Crouch and M. Irving, “On finite Volterra series which admit Hamiltonian realization,” Math. Syst. Theory,17, No. 4, 293–318 (1984).
P. D'Alessandro, A. Isidori, and A. Ruberti, “Realization and structure theory of bilinear systems,” SIAM J. Contr.,12, No. 3, 517–535 (1974).
I. Derese and E. J. Noldus, “Nonlinear control of bilinear systems,” IEEE Proc.D127, No. 4, 169–175 (1980).
D. L. Elliott, “A consequence of controllability,” J. Differ. Equat.,10, No. 2, 364–370 (1971).
E. P. Espinosa, A. Plis, and R. Suares, “About nonlinear system in R × R2 with one dimensional control,” Bol. Soc. mat. mex.,24, No. 2, 83–90 (1979).
M. E. Evans, “Bilinear systems with homogeneous input-output maps,” IEEE Trans. Automat. Contr.28, No. 1, 113–115 (1983).
M. Fliess, “Sur la réalisation des systèmes dynamiques bilinéaires,” C. r. Acad. sci., sér. A,277, No. 18, 923–926 (1973).
M. Fliess, “Sur les systèmes dynamiques bilinéaires qui sont linéaires,” C. r. Acad. sci., sér. A,278, No. 17, 1147–1149 (1974).
M. Fliess, “Séries de Volterra et séries formelles non commutatives,” C. r. Acad. sei., sér. A,280, No. 14, 965–967 (1975).
M. Fliess, “Matrices de Hankel,” J. math, pures et appl.,53, No. 2, 197–222 (1974).
M. Fliess, “Realization of nonlinear systems and abstract transitive Lie algebras,” Bull. Amer. Math. Soc.,2, 444–446 (1980).
M. Fliess, “Analytic nonlinear realizations via E. Cartan's third fundamental theorem,” Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Process., Albuquerque, N. M., 1980, Vol. 2, New York, 922–925 (1980).
M. Fliess, “The unobservability ideal for nonlinear systems,” IEEE Trans. Autom. Contr.,26, No. 2, p. 592 (1981).
M. Fliess, “Développements fonctionels et calcul symbolique non-commutatif,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 359–377 (1981).
M. Fliess, “An algebraic approach to functional expansions, application to a singular optimal control problem,” Contr. Sci. and Technol. Progr. Proc. 8th Trienni. World Congr. Int. Fed. Autom. Contr. Kyoto, 24–28 Aug. 1981, Vol. 1, Oxford, 331–336 (1982).
M. Fliess, “A remark on nonlinear observability,” IEEE Trans. Automat. Contr.,27, No. 5, 489–490 (1982).
M. Fliess, “Finite-dimensional observation spaces for nonlinear systems,” Lect. Notes Contr. and Inf. Sci.,39, 73–77 (1982).
M. Fliess, “Local realization of linear and nonlinear time-varying systems,” Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8–10, 1982, Vol. 2, New York, 733–738 (1982).
M. Fliess, “On the concept of derivatives and Taylor expansions for nonlinear input-output systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec., 1983, Vol. 2, New York, 643–646 (1983).
M. Fliess, “Réalisation des systèmes non-linéaires, algèbres de Lie filtrées transitives et séries génératrices non-commutatives,” Invent, math.,71, 521–537 (1983).
M. Fliess, “On thé inversion of nonlinear multivariable systems,” Lect. Notes Contr. and Inf. Sci.,58, 323–330 (1984).
M. Fliess, “Quelques remarques élémentaires sur le calcul des lois de bouclage en commande optimale non-linéaire,” Lect. Notes Contr. and Inf. Sci.,63, 409–512 (1984).
M. Fliess, “La commande optimale en boucle fermée comme problème de Cauchy,” C. r. Acad. sci., sér. 1,299, No. 16, 807–809 (1984).
M. Fliess and Ivan Kupka, “A finiteness criterion for nonlinear input-output systems,” SIAM J. Contr. and Optim.,21, No. 5, 721–728 (1983).
M. Fliess and F. Lamnabi-Lagarrique, “Séries de Volterra et formalisme hamiltonien,” C. r. Acad. sci., sér. 1,299, No. 15, 783–785 (1984).
M. Fliess and D. Normand-Cyrot, “Vers une approche algébrique des systèmes non-linéaires en temps discret,” Lect. Notes Contr. and Inf. Sci.,28, 594–603 (1980).
M. Fliess and D. Normand-Cyrot, “La propriété d'approximation des systèmes réguliers (ou bilinéaires),” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 379–384 (1981).
M. Fliess and D. Normand-Cyrot, “A group-theoretic approach to discrete-time controllability,” Proc. 20th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., Dec. 16, 1981, Vol. 1–3, New York, 551–557 (1981).
M. Fliess and C. Reutenauer, “Une application de l'algèbre différentielle aux systèmes réguliers (ou bilinéaires),” Lect. Notes Contr. and Inf. Sci.,44, 99–107 (1982).
M. Fliess and C. Reutenauer, “Picard-Vessiot theory of bilinear systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 3, New York, 1153–1157 (1983).
M. Fliess and C. Reutenauer, “Théorie de Picard-Vessiot des systèmes réguliers (ou bilinéaires),” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, Paris, 557–581 (1983).
A. E. Frazho, “A shift operator approach to bilinear system theory,” SIAM J. Contr. and Optim.,18, No. 6, 640–658 (1980).
E. Freund, “The structure of decoupled nonlinear systems,” Int. J. Contr.,21, No. 3, 443–450 (1975).
R. E. Gaines and J. K. Peterson, “Degree theoretic methods in optimal control,” J. Math. Anal, and Appl.,94, No. 1, 44–77 (1983).
J.-P. Gauthier, “Structure des systèmes non-linéaires,” CNRS, Paris (1984).
J.-P. Gauthier and G. Bernard, “Observability for anyu(t) of a class of nonlinear systems,” Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, Albuquerque, N. M., 1980, Vol. 2, New York, 910–915 (1980).
J.-P. Gauthier and G. Bornard, “Observability for any u(t) of a class of nonlinear systems,” IEEE Trans. Automat. Contr.,26, No. 4, Part 1, 922–926 (1981).
J.-P. Gauthier and G. Bornard, “Stabilisation des systèmes non-linéaires,” Outils et modèles math. autom. Anal. syst. et trait, signal, Vol. 1, Paris, 307–324 (1981).
J.-P. Gauthier and G. Bornard, “Existence and uniqueness of minimal realization inC ∞-case,” Syst. and Contr. Lett.,2, No. 6, 342–350 (1982).
J.-P. Gauthier and G. Bornard, “An openness condition for the controllability of nonlinear systems,” SIAM J. Contr. and Optim.,20, No. 6, 808–814 (1982).
J.-P. Gauthier and G. Bornard, “Uniqueness of weakly minimal analytic realizations,” IEEE Trans. Automat. Contr.,28, No. 1, 111–113 (1983).
J.-P. Gauthier and G. Bornard, “Existence and uniqueness of minimal realizations for a class ofC ∞-systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 3, New York, 1158–1161 (1983).
J.-P. Gauthier and G. Bornard, “Résultats actuels sur la théorie des déformations des systèmes non-linéaires,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, Paris, 583–598 (1983).
J.-P. Gauthier and G. Bornard, “Existence and uniqueness of minimal realizations for a class ofC ∞-systems,” SIAM J. Contr. and Optim.,22, No. 4, 666–670 (1984).
J.-P. Gauthier and G. Bornard, “Existence et unicité des réalisations analytiques minimales globales des systèmes non-linéaires,” C. r. Acad. sci., sér. 1,299, No. 12, 579–581 (1984).
Y. Gerbier and C. Lobry, “On the structural stability of dynamical control systems,” Proc. IFAC 8th World congr., Boston-Cambridge, Mass., 1975, Part 1, Pittsburgh, Pa., 36311–56319 (1975).
F. Geromel, J. Levine, and P. Willis, “A fast algorithm for systems decoupling using formal calculus,” Lect. Notes Contr. and Inf. Sci.,63, 378–390 (1984).
G. Gezareo and R. Marino, “On the application of symbolic computation to nonlinear control theory,” Lect. Notes Comput. Sci.,174, 35–46 (1984).
S. T. Glad, “Observability and nonlinear deadbeat observers,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec., 1983, Vol. 2, New York, 800–802 (1983).
K. A. Grasse, “Perturbations of nonlinear controllable systems,” SIAM J. Contr. and Optim.,19, No. 2, 203–220 (1981).
K. A. Grasse, “Nonlinear perturbations of control-semilinear control systems,” SIAM J. Contr. and Optim.,20, No. 3, 311–327 (1982).
K. A. Grasse, “Some topologkal covering theorems with applications to control theory,” J. Math. Anal, and Appl,91, No. 2, 305–318 (1983).
K. A. Grasse, “On accessibility and normal accessibility: the openness of controllability in the fineC 0-topology,” J. Differ. Equat.,53, No. 3, 387–441 (1984).
O. M. Grasselli and A. Isidori, “Deterministic state reconstruction and reachability of bilinear control processes,” Proc. Joint Automat. Contr. Conf., San Francisco, 1977, Vol. 1, New York, 1423–1427 (1977).
J. W. Grizzle and S. I. Marcus, “Symmetries in nonlinear control systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 3, New York, 1384–1388 (1983).
J. W. Grizzle and S. I. Marcus, “Optimization of systems possessing symmetries,” Lect. Notes Contr. and Inf. Sci.,63, 513–524 (1984).
Jan M. Gronski, “Perturbations of open sets of attainability,” Math. Syst. Theory,10, No. 3, 285–287 (1976–1977).
Jan M. Gronski, “Classification of closed sets of attainability in the plane,” Pacif. J. Math.,77, No. 1, 117–129 (1978).
Jan M. Gronski, “A criterion for classifying certain planar systems,” Ann. mat. pura ed appl.,124, 1–12 (1980).
J. Hammer, “Non-linear systems: stability and rationality,” Int. J. contr.,40, No. 1, 1–35 (1984).
G. W. Haynes and H. Hermes, “Nonlinear controllability via Lie theory,” SIAM J. Contr.,8, No. 4, 450–460 (1970).
M. Hazewinkel, “Control and filtering of a class of nonlinear but homogeneous systems,” Lect. Notes Contr. and Inf. Sci.,39, 123–126 (1982).
M. Hazewinkel, “Lectures on invariants, representations and algebras in systems and control theory,” Lect. Notes Math.,1029, 1–36 (1984).
J. S. Hepburn and W. M. Wonham, “Error feedback and internal models on differentiable manifolds,” Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8–10, 1982, Vol. 2, New York, 717–722 (1982).
J. S. Hepburn and W. M. Wonham, “Structurally stable nonlinear regulation with step inputs,” Math. Syst. Theory,17, No. 4, 319–333 (1984).
R. Hermann, “On the accessibility problem in control theory,” Internat. Sympos. Nonlinear Different. Equations and Nonlinear Mech., Colorado Springs, 1961, Acad. Press, New York-London, 325–332 (1963).
R. Hermann, “Some remarks on geometry of systems,” Geometr. Meth. Syst. Theory, Dordrecht-Boston, 237–242 (1973).
R. Hermann, “The theory of equivalence of Pfaffian systems and input systems under feedback,” Math. Syst. Theory,15, No. 4, 343–356 (1982).
R. Hermann, “Pfaffian systems and feedback linearization/obstructions,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 1, New York, 119–121 (1983).
R. Hermannand A. J. Krener, “Nonlinear controllability and observability,” IEEE Trans. Autom. Contr.,22, No. 5, 728–740 (1977).
R. Hermann and C. F. Martin, “Applications of algebraic geometry to systems theory. Part 1,” IEEE Trans. Automat. Contr.,22, No. 1, 19–25 (1977).
H. Hermes, “On local and global controllability,” SIAM J. Contr.,12, No. 2, 252–261 (1974).
H. Hermes, “Necessary and sufficient conditions for local controllability and time optimality,” Proc. Int. Congr. Math., Vancouver, 1974, Vol. 2, s. 1, 343–347 (1975).
H. Hermes, “On local controllability,” Banach Center. Publ., Vol. 1, Proc. Conf. Zakopane 1974, Warszawa, PWN, 103–106 (1976).
H. Hermes, “Local controllability and sufficient conditions in singular problems. I,” J. Differ. Equat.,20, No. 1, 213–232 (1976).
H. Hermes, “Local controllability and sufficient conditions in singular problems. II,” SIAM J. Contr. and Optim.,14, No. 6, 1049–1062 (1976).
H. Hermes, “High order conditions for local controllability and controlled stability,” Proc. IEEE Conf. Decis. and Contr. incl. 15th Symp. Adapt. Process., Clearwater, Fla., 1976, New York, 836–840 (1976).
H. Hermes, “High order algebraic conditions for controllability,” Lect. Notes Econ. and Math. Syst.,131, 165–171 (1976).
H. Hermes, “High order controlled stability and controllability,” Dyn. Syst. Proc. Univ. Fla. Int. Symp. Gainesville, 1976, New York, 89–99 (1977).
H. Hermes, “Controlled stability,” Ann. mat. pura ed appl.,114, 103–119 (1977).
H. Hermes, “Lie algebras of vector fields and local approximation of attainable sets,” SIAM J. Contr. and Optim.,16, No. 5, 715–727 (1978).
H. Hermes, “The high order local approximation of attainable sets,” Proc. 17th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Process., San Diego, Calif., 1978, New York, 151–152 (1979).
H. Hermes, “Local controllability of observables in finite and infinite dimensional nonlinear control systems,” Appl. Math, and Optim.,5, No. 2, 117–125 (1979).
H. Hermes, “Controllability of nonlinear delay differential equations,” Nonlinear Anal.: Theory, Meth. and Appl.,3, No. 4, 483–493 (1979).
H. Hermes, “On a stabilizing feedback attitude control,” J. Optimiz. Theory and Appl.,31, No. 3, 373–384 (1980).
H. Hermes, “On the synthesis of a stabilizing feedback control via Lie algebraic methods,” SIAM J. Contr. and Optimiz.18, No. 4, 352–361 (1980).
H. Hermes, “On local controllability,” Proc. 20th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., Dec. 16, 1981, Vol. 1–3, New York, 548–550 (1981).
H. Hermes, “A. Lie algebraic decomposition of nonlinear systems,” Proc. 20th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processess, San Diego, Calif., Dec. 16, 1981, Vol. 1–3, New York, 568–569 (1981).
H. Hermes, “Control systems which generate decomposable Lie algebras,” J. Differ. Equat.,44, No. 2, 166–187 (1982).
H. Hermes, “On local controllability,” SIAM J. Contr. and Optim.,20, No. 2, 211–220 (1982).
R. M. Hirschorn, “Global controllability of nonlinear systems,” SIAM J. Contr.,14, No. 4, 700–711 (1976).
R. M. Hirschorn, “Invertibility of control systems on Lie groups,” SIAM J. Contr. and Optim.15, No. 6, 1034–1049 (1977).
R. M. Hirschorn, “Invertibility of nonlinear control systems,” SIAM J. Contr. and Optim.17, No. 2, 289–297 (1979).
R. M. Hirschorn, “Invertibility of multivariable nonlinear control systems,” IEEE Trans. Automat. Contr.,24, No. 6, 855–865 (1979).
R. M. Hirschorn, “Inverses for nonlinear control systems,” Astérisque, No. 75–76, 133–139 (1980).
R. M. Hirschorn, “(A, B)-invariant distributions and disturbance decoupling of nonlinear systems,” SIAM J. Contr. and Optimiz.,19, No. 1, 1–19 (1981).
R. M. Hirschorn, “Output tracking in multivariable nonlinear systems,” IEEE Trans. Automat. Contr.,26, No. 2, 593–595 (1981).
Chin S. Hsu, Uday B. Desai, and Christopher A. Grawley, “Realization algorithms and approximation methods of bilinear systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 2, New York, 783–788 (1983).
Garng M. Huang, T. J. Tarn, and John W. Clark, “On the controllability of quantum-mechanical systems,” J. Math. Phys.,24, No. 11, 2608–2618 (1983).
L. R. Hunt, “Controllability of nonlinear systems,” 12th Asilomar Conf. Circuits, Syst and Comput., Pacific Grove, Calif., 1978, Conv. Rec. New York, 466–467 (1979).
L. R. Hunt, “Controllability of nonlinear hypersurface systems,” Algebraic and Geom. Meth. Linear Syst. Theory, Pap AMS-NASA-NATO Summer Semin., Harvard Univ., June 1979, Providence, R. I., 209–224 (1980).
L. R. Hunt, “Controllability of general nonlinear systems,” Math. Syst. Theory,12, No. 4, 361–370 (1979).
L. R. Hunt, “Controllability and stabilizability,” IEEE Int. Symp. Circuits and Syst. Proc., Houston, Tex., Vol. 1, New York, 654–657 (1980).
L. R. Hunt, “n-dimensional controllability withn −1 controls,” IEEE Trans. Automat. Contr.27, No. 1, 113–117 (1982).
L. R. Hunt, “Global controllability of nonlinear systems in two dimensions,” Math. Syst. Theory,13, No. 4, 361–376 (1980).
L. R. Hunt and Renjeng Su, “Transforming nonlinear systems,” 24th Midwest Symp. Circuits and Syst., Albuquerque, N. M., June 29–30, 1981, North Hollywood, Calif., 341–345 (1981).
L. R. Hunt and Renjeng Su, “Control of nonlinear nonstationary systems,” Proc. 20th IEEE Conf. Decis. and Contr. inch Symp. Adapt. Processes, San Diego, Calif., Dec. 1981, Vol. 1–3, New York, 558–563 (1981).
L. R. Hunt and Renjeng Su, “Linear approximation of nonlinear systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 1, New York, 122–125 (1983).
L. R. Hunt and Renjeng Su, “Observability for two-dimensional systems,” Math. Syst. Theory,17, No. 2, 159–166 (1984).
L. R. Hunt, Renjeng Su, and G. Meyer, “Global transformations of nonlinear systems,” IEEE Trans. Autom. Contr.,28, No. 1, 24–31 (1983).
L. R. Hunt, Renjeng Su, and G. Meyer, “Design for multi-input nonlinear systems,” Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ., June 28–July 2, 1982, Boston, 268–298 (1983).
N. Imbert, M. Clique, and A.-J. Fossard, “Un critère de gouvernabilité des systèmes bilinéaires,” RAIRO,3, 55–64 (1979).
Yujiro Inouye, “On the observability of autonomous nonlinear systems,” J. Math. Anal, and Appl.,60, No. 1, 236–247 (1977).
A. Isidori, “Direct construction of minimal bilinear realization from nonlinear input-output maps,” IEEE Trans. Automat. Control,18, No. 6, 626–631 (1973).
A. Isidori, “Sur la théorie structurelle et le problème de la rejection des perturbations dans les systèmes non-linéaires,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 245–294 (1981).
A. Isidori, “Observabilité et observateurs des systèmes non-linéaires,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 295–305 (1981).
A. Isidori, “The geometric approach to nonlinear feedback control. A survey,” Lect. Notes Contr. and Inf. Sci.,44, 517–531 (1982).
A. Isidori, “Formal infinite zeros of nonlinear systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 2, New York, 647–652 (1983).
A. Isidori, “Sous-espaces de commandabilité dans les systèmes non-linéaires,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, Paris, 599–608 (1983).
A. Isidori, “Nonlinear feedback, structure at infinity and the input-output linearization problem,” Lect. Notes Contr. and Inf. Sci.,58, 473–493 (1984).
A. Isidori and A. J. Krener, “On feedback equivalence of nonlinear systems,” Syst. and Contr. Lett.,3, No. 2, 118–121 (1982).
A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, “Nonlinear decoupling via feedback: A differential geometric approach,” IEEE Trans. Automat. Contr.,26, No. 2, 331–345 (1981).
A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, “The observability of cascade connected nonlinear systems,” Contr. Sci. and Technol. Progr. Soc., Proc. 8th Trienni. World Congr. Int. Fed. Autom. Contr., Kyoto, 24–28 Aug. 1981, Vol. 1, Oxford, 337–341 (1982).
A. Isidori, A. J. Krener, C. Gori-Giorgi, and S. Monaco, “Locally (f,g)-invariant distributions,” Syst. and Contr. Lett.,2, No. 1, 12–15 (1981).
A. Isidori and A. Ruberti, “Realization theory of bilinear systems,” Geom. Meth. Syst. Theory, Dordrecht-Boston, 83–130 (1973).
A. Isidori and A. Ruberti, “Time varying bilinear systems,” Lect. Notes Econ. and Math. Syst.,111, 44–53 (1975).
A. Isidori and A. Ruberti, “State-space representation and realization of time-varying linear input-output functions,” J. Franklin Inst.,301, No. 6, 573–592 (1976).
G. Jacob, “Réalisation des systèmes réguliers (ou bilinéaires) et séries génératrices non-commutatives,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 325–357 (1981).
B. Jacubczyk, “Existence and uniqueness of realizations of nonlinear systems,” SIAM J. Contr. and Optim.,18, No. 4, 455–471 (1980).
B. Jacubczyk, “Existence and uniqueness of nonlinear realizations,” Astérisque, No. 75–76, 141–147 (1980).
B. Jacubczyk, “Construction of formal and analytic realizations of nonlinear systems,” Lect. Notes contr. and Inf. Sci.,39, 147–156 (1982).
B. Jacubczyk and B. Kaśkosz, “Realizations of Volterra series,” Lect. Notes Contr. and Inf. Sci.,22, 302–310 (1980).
B. Jacubczyk and B. Kaskosz, “Readability of Volterra series with constant kernels,” Nonlinear Anal.: Theory Meth. and Appl.,5, No. 2, 167–183 (1981).
B. Jacubczyk and D. Normand-Cyrot, “Orbites de pseudogroupes de difféomorphismes et commandabilité des systèmes nonlinéaires en temps discret,” C. r. Acad. sci., sér. 1,298, No. 11, 257–260 (1984).
B. Jacubczyk and W. Respondek, “On linearization of control systems,” Bull. Acad. pol. Sci., Sér. sci. math.,28, No. 9–10, 517–522 (1980).
V. Jurdjevič, “Abstract control systems. Controllability and observability,” SIAM J. Contr.,8, No. 3, 424–439 (1970).
V. Jurdjevič, “Certain controllability properties of analytic control systems,” SIAM J. Contr.,10, No. 2, 354–360 (1972).
V. Jurdjevič, “Causal dynamical systems: irreducible realizations,” Geometr. Meth. Syst. Theory, Dordrecht-Boston, 253–262 (1973).
V. Jurdjevic, “On the structure of irreducible state representation of a causal system,” Math. Syst. Theory,8, No. 1, 77–89 (1974).
V. Jurdjevič, “Attainable sets and controllability: a geometric approach,” Lect. Notes Econ. and Math. Syst.,106, 219–251 (1974).
V. Jurdjevič, “Polynomial control systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16, Dec. 1983, Vol. 2, New York, 904–906 (1983).
V. Jurdjevic and I. Kupka, “Control systems on semi-simple Lie groups and their homogeneous spaces,” Ann. Inst. Fourier,31, No. 4, 151–179 (1981).
V. Jurdjevič and I. Kupka, “Control systems subordinated to a group action: Accessibility.” J. Differ. Equat.,39, No. 2, 186–211 (1981).
V. Jurdjevič and J. Quin, “Controllability and stabilizability,” J. Differ. Equat.,28, No. 3, 381–389 (1978).
V. Jurdjevič and G. Sallet, “Controllability of affine systems,” Differ. Geom. Contr. Theory, Proc. Conf. Mich., Technol. Univ., June 28–July 2, 1982, Boston, 299–309 (1983).
V. Jurdjevič and G. Sallet, “Controllability properties of affine systems,” SIAM J. Contr. and Optim.,22, No. 3, 501–508 (1984).
V. Jurdjevič and H. J. Sussmann, “Control systems on Lie groups,” J. Differ. Equat.,12, No. 2, 313–329 (1972).
B. Kalitine and C. Lobry, “Complète contrôlabilité de certains systèmes non-linéaires,” Rev. roum. pures et appl.,24, No. 2, 255–271 (1979).
N. Kalouptsidis, “Prolongations and Lyapunov functions in control systems,” Math. Syst. Theory,16, No. 3, 233–249 (1983).
N. Kalouptsidis and D. L. Elliott, “Stability analysis of the orbits of control systems,” Math. Syst. Theory,15, No. 4, 323–342 (1982).
N. Kalouptsidis and J. Tsinias, “Stability improvement of nonlinear systems by feedback,” IEEE Trans. Autom. Contr.,29, No. 4, 364–367 (1984).
I. Kluvánek and G. Knowless, “The bang-bang principle,” Lect. Notes Math.,680, 138–151 (1978).
H. W. Knobloch, “Local controllability in nonlinear systems,” Dyn. Syst. Proc. Univ. Fla. Int. Symp. Gainesville 1976, New York, 157–174 (1977).
H. W. Knobloch, “Higher order necessary conditions in optimal control theory,” Lect. Notes Math.,827, 151–164 (1980).
H. W. Knobloch, “Higher order necessary conditions in optimal control theory,” Lect. Notes Contr. and Inf. Sci.,34 (1981).
A. Kóza, “On global optimization of control processes, system-theoretical aspects,” Z. angew. Math, und Mech.,63, No. 5, T412-T413 (1983).
A. J. Krener, “A generalization of the accessibility problem for control systems,” IEEE Conf. Decis. and Contr. incl. 10th Symp. Adapt. Processes, Miami Beach, Fla. 1971, New York, 186–187 (1971).
A. J. Krener, “On the equivalence of control systems and the linearization of nonlinear systems,” SIAM J. Contr.11, No. 4, 670–676 (1973).
A. J. Krener, “The high order maximum principle,” Geom. Meth. Syst. Theory, Dordrecht-Boston, 174–184 (1973).
A. J. Krener, “A generalization of Chow's theorem and bang-bang theorem to nonlinear control problems,” SIAM J. Contr.12, No. 1, 43–52 (1974).
A. J. Krener, “Local approximations of control systems,” J. Differ. Equat.,19, No. 1, 125–133 (1975).
A. J. Krener, “Linearization and bilinearization of control systems,” Proc. Allerton Conf. Circuits and Syst. Theory 1974, Montello, 834–843 (1974).
A. J. Krener, “Bilinear and nonlinear realizations of input-output maps,” SIAM J. Contr.13, No. 4, 827–834 (1975).
A. J. Krener, “Structural stability of control systems,” Notices Amer. Math. Soc.,22, p. 407 (1975).
A. J. Krener, “Local approximation of control systems,” J. Differ. Equat.,19, No. 1, 125–133 (1975).
A. J. Krener, “The high order maximum principle and its application to singular extremals,” SIAM J. Contr. and Optim.,15, No. 2, 256–293 (1977).
A. J. Krener, “A decomposition theory for differentiable systems,” SIAM J. Contr. and Optim.15, No. 5, 813–829 (1977).
A. J. Krener, “A note on commutative bilinear optimal control,” IEEE Trans. Autom. Contr.23, No. 6, p. 111 (1978).
A. J. Krener, “(f, g)-invariant distributions, connections, and Pontryagin classes,” Proc. 20th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., Dec. 16, 1981, Vol. 1–3, New York, 1322–1325 (1981).
A. J. Krener and A. Isidori, “Nonlinear zero distributions,” Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, Albuquerque, N. M., 1980, Vol. 1, New York, 665–668 (1981).
A. J. Krener, A. Isidori, and W. Respondek, “Partial and robust linearization by feedback,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16, Dec. 1983, Vol. 1, New York, 126–130 (1983).
P. S. Krishnaprasad, “Deformation of Lie algebras and the Wei-Norman equations,” Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, Albuquerque, N. M., 1980, Vol. 1, New York, 661–662 (1981).
P. S. Krishnaprasad and J. Han, “Symmetries and reduced linearization: Part II,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 3, New York, 1162–1164 (1983).
J. Kučera, “Solution in large of control problemx=(A(1 −u)+uB)x,” Czechosl. Math. J.,16, No. 4, 600–623 (1966).
J. Kučera, “Solution in large of control problem x=(Au+Bv)x,” Czechosl. Math. J.,17, No. 1, 91–96 (1967).
J. Kučera, “On the accesssibility of bilinear systems,” Czechosl. Math. J.,20, No. 1, 160–168 (1970).
H. Kunita, “On the controllability of nonlinear systems with applications to polynomial systems,” Appl. Math, and Optim.,5, No. 2, 89–99 (1979).
I. Kupka, “Some problems in accessibility theory,” Astérisque, No. 75–76, 167–176 (1980).
I. Kupka and G. Sallet, “A sufficient condition for the transitivity of pseudo-semigroups: Application to system theory,” J. Differ. Equat.,47, No. 3, 462–470 (1983).
F. Lamnabhi-Laggarrigue, “Sur les conditions nécessaires d'optirnalité du deuxième et troisième ordre dans les problèmes de commande optimale singulière,” Lect. Notes Contr. and Inf. Sci.,63, 525–541 (1983).
F. Lamnabhi-Laggarrigue, “A Volterra series interpretation of some high order conditions in optimal control,” Lect. Notes Contr. and Inf. Sci.,58, 615–627 (1984).
F. Lamnabhi-Laggarrigue, “contrexemple à une conjecture dans la classe des problèmes de commande optimale singulière,” C. r. Acad. sci., sér. 1,298, No.14, 333–336 (1984).
G. Landholz and M. Sokolov, “Carathéodory controllability criterion for nonlinear dynamical systems,” Trans. ASME J. Dyn. Syst., Meas. and Contr.,100, No. 3, 209–213 (1978).
C. Lesiak and A. J. Krener, “The existence and uniqueness of Volterra series for nonlinear systems,” IEEE Trans. Automat. Contr.,23, No. 6. 1090–1095 (1978).
N. Levitt, “Homotopy and continuous reachability,” Topology,15, No. 1, 55–67 (1975).
N. Levitt, “Small sets of homeomorphisms which control manifolds,” Proc. Amer. Math. Soc.,57, No. 1, 173–178 (1976).
N. Levitt and H. J. Sussmann, “On controllability by means of two vector fields,” SIAM J. Contr.13, No. 6, 1271–1281 (1975).
N. Levitt and H. J. Sussmann, “The generalized pursuit problem where the pursuer uses bang-bang controls,” Differ. Games and Control Theory, II, New York-Basel, 253–264 (1977).
James Ting-Ho Lo, “Global bilinearization of systems with control appearing linearly,” SIAM J. Contr.13, No. 4, 879–885 (1975).
C. Lobry, “Etude géométrique des problèmes d'optimisation en présence de contraintes,” Thèse Doct. math, pures. Fac. sci. Univ. Grenoble (1967).
C. Lobry, “Application d'un résultat de Chow à la théorie du contrôle optimal,” C. r. Acad. sci.,270, No. 11, 725–727 (1970).
C. Lobry, “Contrôlabilité des systèmes non-linéaires,” SIAM J. Contr.,8, No. 4, 573–605 (1970).
C. Lobry, “Contrôlabilité des systèmes linéaires par des commandes bang-bang,” Rev. Franc. Inf. et Rech. Oper.,4, No. 3, 135–140 (1970).
C. Lobry, “Une propriété de l'ensemble des états accessibles d'un système guidable,” C. r. Acad. sci.,272, No. 2, 153–156 (1971).
C. Lobry, “Une propriété générique des couples de champs de vecteurs,” Czechosl. Math. J.,22, No. 2, 230–237 (1972).
C. Lobry, “Quelques propriétés «génériques» des systèmes à commande,” Lect. Notes Math.,280, 120–130 (1972).
C. Lobry, “Dynamical polysystems and control theory,” Geom. Meth. Syst. Theory,” Dordrecht-Boston, 1–42 (1973).
C. Lobry, “Controllability of nonlinear systems on compact manifolds.” SIAM J. Contr.12, No. 1, 1–4 (1974).
C. Lobry, “Deux remarques sur la bang-bang des systèmes semi-linéaires,” Banach. Center. Publ, Vol. 1, Proc. Conf. Zakopane, 1974, Warszawa, PWN, 139–145 (1976).
C. Lobry, “Controllability of nonlinear control dynamical systems,” Contr. Theory and Top. Funct. Anal., Vol. 1, Vienna, 361–383 (1976).
C. Lobry, “Contrôlabilité des systèmes non-linéaires,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 187–214 (1981).
C. Lobry and G. Sallet, “Complète contrôlabilité sur les groupes de déplacements,” Multivariable Technol. Syst. Proc. 4th IFAC Int. Symp., Fredericton, 1977, Oxford, 277–283 (1978).
S. Lojasievicz, Jr., “Some properties of accessible sets in non-linear control systems,” Ann. pol. math.,36, No. 2, 56–61 (1979).
S. I. Marcus, “Algebraic and geometric methods in nonlinear filtering,” SIAM J. Contr. and Optim.,22, No. 6, 817–844 (1984).
R. Marino, “Stabilization and feedback equivalence to linear coupled oscillators,” Int. J. Contr.,39, No. 3, 487–496 (1984).
R. Marino and S. Nicosia, “Linear-model-following control and feedback equivalence to linear controllable systems,” Int. J. Contr.,39, No. 3, 473–485 (1984).
L. Markus, “Controllability of multi-trajectories on Lie groups,” Lect. Notes Math.,898, 250–256 (1981).
M. Matsuda, “An integration theorem for completely integrable systems with singularities,” Osaka J. Math.,5, No. 2, 279–283 (1968).
G. Meyer, R. Su, and L. R. Hunt, “Applications of nonlinear transformations to automatic flight control,” Automatica,20, No. 1, 103–107 (1984).
S. Mirica, “Stratified Hamiltonians and optimal feedback control,” Ann. math, pura ed appl.,133, 51–78 (1983).
R. R. Mohler, “Bilinear control processes,” Acad. Press, New York-London (1973).
R. R. Mohler and R. E. Rink, “Reachable zones for equicontinuous bilinear control processes,” Int. J. Contr.,14, No. 3, 331–339 (1971).
S. Monaco and D. Normand-Cyrot, “The immersion under feedback of a multi-dimensional discretetime system into a linear system.” Int. J. Contr.,38, No. 1, 245–261 (1983).
S. Monaco and D. Normand-Cyrot, “Formal power series and input-output linearization of nonlinear discrete-time systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 2, New York, 655–660 (1983).
S. Monaco and D. Normand-Cyrot, “Sur la subordination d'un système non-linéaire discret à un système linéaire,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 3, Paris, 609–621 (1983).
S. Monaco and D. Normand-Cyrot, “Sur la commande non-interactive des systèmes non-linéaires en temps discret,” Lect. Notes Contr. and Inf. Sci.63, 364–377 (1984).
T. Mumuro and J. Susiura, “On controllable pairs of systems on compact Lie groups,” Trans. Soc. Inst, and Contr. Eng.,16, No. 5, 623–627 (1980).
T. Nagano, “Linear differential systems with singularities and an application to transitive Lie algebras,” J. Math. Soc. Japan,18, No. 4, 398–404 (1966).
H. Nijmeijer, “Controlled invariance for affine control systems,” Int. J. Contr.,34, No. 4, 825–833 (1981).
H. Nijmeijer, “Observability of a class of nonlinear systems: a geometric approach,” Ric. Automat.,12, No. 1, 50–68 (1981).
H. Nijmeijer, “Invertibility of affine nonlinear control systems: a geometric spproach,” Syst. and Contr. Lett.,2, No. 3, 163–168 (1982).
H. Nijmeijer, “Feedback decomposition of nonlinear control systems,” IEEE Trans. Autom. Contr.,28, No. 8, 861–862 (1983).
H. Nijmeijer, “Noninteracting control for nonlinear systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16, Dec. 1983, Vol. 1, New York, 131–133 (1983).
H. Nijmeijer, “The triangular decoupling problem for nonlinear control systems,” Nonlinear Anal.: Theory, Meth. and Appl.,8, No. 3, 273–279 (1984).
H. Nijmeijer, “State-space equivalence of an affine non-linear system with outputs to a minimal linear system,” Int. J. Contr.,39, No. 5, 919–922 (1984).
H. Nijmeijer and A. J. van der Schaft, “Controlled invariance for nonlinear systems,” IEEE Trans. Automat. Contr.27, No. 4, 904–914 (1982).
H. Nijmeijer and A. J. qvan der Schaft, “Controlled invariance for nonlinear systems: two worked examples,” IEEE Trans. Autom. Contr.,29, No. 4, 361–364 (1984).
H. Nijmeijer and J. M. Schumacher, “Input-output decoupling of nonlinear sytems with an application to robotics,” Lect. Notes Contr. and Inf. Sci.,63, 391–411 (1984).
H. Nijmeijer and J. M. Schumacher, “Les systèmes non-linéaires à plus d'entrées que de sorties ne sont pas inversibles,” C. r. Acad. sci., sér. 1,299, No. 15, 791–794 (1984).
D. Normand-Cyrot, “Une condition de réalisation par systèmes à état-affine discrets,” Lect. Notes Contr. and Inf. Sci.,44, 88–98 (1982).
D. Normand-Cyrot, “An algebraic approach to the input-output description of nonlinear discrete-time systems,” Proc. Amer. Contr. Conf., Arlington, Va., June 14–16, 1982, New York, 466–471 (1982).
R. Nottrot, “Optimal processes on manifolds: an application of Stokes' theorem,” Lect. Notes Math.,963, VI (1982).
C. K. Ong, G. M. Huang, T. J. Tarn, and J. W. Clark, “Invertibility of quantum-mechanical control systems,” Math. Syst. Theory,17, No. 4, 335–350 (1984).
J. G. Pearlman, “Readability of multilinear input-output maps,” Int. J. Contr.,32, No. 2, 271–283 (1980).
Y. Péraire, “Sur la contrôlabilité des familles de champs de vecteurs uniformément presque-périodiques,” C. r. Acad. sci., sér. 1,295, No. 2, 181–183 (1982).
Y. Péraire, “Une démonstration brève d'un principe du maximum d'ordre supérieur,” C. r. Acad., sci., sér. 1,299, No. 7, 273–276 (1984).
J. R. Quin, “Stabilization of bilinear systems by quadratic feedback controls,” J. Math. Anal, and Appl.75, No. 1, 66–80 (1980).
K. V. Rao and R. R. Mohler, “On the synthesis of Volterra kernels of bilinear systems,” Automat. Contr. Theory and Appl.,3, No. 3, 44–46 (1975).
D. Rebhuhn, “On the closure of sets of attainability in R2,” J. Optim. Theory and Appl.,20, No. 4, 439–454 (1976).
D. Rebhuhn, “On the attainability set of nonlinear nonautonomous control systems,” SIAM J. Contr. and Optim.,15, No. 5, 803–812 (1977).
D. Rebhuhn, “On the stability of the existence of singular controls under perturbation of control systems,” SIAM J. Contr. and Optim.,16, No. 3, 463–472 (1978).
W. Respondek, “On decomposition of nonlinear control systems,” Syst. and Contr. Lett.,2, No. 5, 301–306 (1982).
R. E. Rink and R. R. Mohler, “Completely controllable bilinear systems,” SIAM J. Contr.,6, No. 3, 477–486 (1968).
E. P. Ryan, “Global asymptotic stabilization of a class of bilinear control systems,” Int. J. Contr.,38, No. 2, 359–367 (1983).
E. P. Ryan and N. J. Buckingham, “On asymptotically stabilizing feedback control of bilinear systems,” IEEE Trans. Autom. Contr.,28, No. 8, 863–864 (1983).
G. Sallet, “Complète contrôlabilité sur les groupes linéaires,” Outils et modèles math, autom. Anal. syst. et trait, signal., Vol. 1, Paris, 215–227 (1981).
I. W. Sanberg, “Volterra-like expansions for solutions of nonlinear integral equations and nonlinear differential equations,” IEEE Trans. Circuits and Syst.,30, No. 2, 68–77 (1983).
I. W. Sanberg, “On Volterra expansions for time-varying nonlinear systems,” IEEE Trans. Circuits and Syst.,30, No. 2, 61–67 (1983).
A. J. van der Schaft, “Controllability and observability for affine nonlinear Hamiltonian systems,” IEEE Trans. Autom. Contr.,27, No. 2, 490–492 (1982).
A. J. van der Schaft, “Hamiltonian dynamics with external forces and observations,” Math. Syst. Theory,15, No. 2, 145–168 (1982).
A. J. van der Schaft, “Observability and controllability for smooth nonlinear systems,” SIAM J. Contr. and Optim.,20, No. 3, 338–354 (1982).
Prodip Sen, “On the choice of input for observability in bilinear systems,” Proc. Joint Autom. Contr. Conf., San Francisco, Calif., 1980, Vol. 2, s. 1, 214–217 (1980).
M. Shima and Y. Kita, “Variational system theory,” Contr. Sci. and Techn. Progr. Soc. Proc. 8th Trienni. World Congr. Int. Fed. Autom. Contr. Kyoto, 24–28 Aug. 1981, Vol. 1, Oxford, 301–306 (1982).
S. N. Singh, “Generalized decoupled-controlled synthesis for invertible nonlinear systems,” IEEE Proc.D128, No. 4, 157–161 (1981).
S. N. Singh, “On stabilization of nonlinear Hamiltonian systems and nonconservative systems in elasticity,” Proc. 22nd IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., Dec. 16, 1981, Vol. 1–3, New York, 290–295 (1981).
S. N. Singh, “A modified algorithm for invertibility in nonlinear systems,” IEEE Trans. Autom. Contr.,26, No. 5, 595–598 (1981).
S. N. Singh, “Generalized functional reproducibility condition for nonlinear systems,” IEEE Trans. Automat. Contr.27, No. 5, 958–960 (1982).
S. N. Singh, “Reproducibility in nonlinear systems using dynamic compensation and output feedback,” IEEE Trans. Autom. Contr.,27, No. 5, 955–958 (1982).
S. N. Singh, “Invertibility of multivariable parabolic distributed parameter systems,” IEEE Trans. Autom. Contr.,27, No. 1, 276–279 (1982).
S. N. Singh, “Invertibility of observable multivariable nonlinear systems,” IEEE Trans. Autom. Contr.,27, No. 2, 487–489 (1982).
S. N. Singh, “Functional reproducibility and right invertibility in multivariable nonlinear systems,” 4 Congr. bras, autom., Campinas, 14–17 set. 1982, Anais, Vol. 2, Campinas, 683–387 (1982).
H. Sira-Ramirez, “On the convex hull of reachable sets for bilinear systems,” Proc. Joint Autom. Contr. Conf., San Francisco, Calif., 1980, Vol. 2, S. 1, 218–219 (1980).
W. W. Smith, Jr. and W. J. Rugh, “On the structure of a class of nonlinear systems,” IEEE Trans. Autom. Contr.,19, No. 6, 701–706 (1974).
G. Sonnevend, “Solution of identification problems via realization theory,” Math. Models Phys. and Chem. and Numer. Meth. Realiz. Proc. Semin., Vesegrad, Oct. 1982, Leipzig, 107–115 (1984).
E. D. Sontag, “On the observability of polynomial systems. 1. Finite-time problems,” SIAM J. Contr. and Optim.17, No. 1, 139–151 (1979).
E. D. Sontag, “Polynomial response maps,” Lect. Notes Contr. and Inf. Sci.,13, VIII (1979).
E. D. Sontag, “An approximation theorem in nonlinear sampling,” Lect. Notes Contr. and Inf. Sci.,58, 806–812 (1984).
E. D. Sontag and H. Sussmann, “Remarks on continuous feedback,” Proc. 19th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processess, Albuquerque, N. M., 1980, Vol. 2, New York, 916–921 (1980).
E. D. Sontag and H. Sussmann, “Accessibility under sampling,” Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8–10, 1982, Vol. 2, New York, 727–732 (1982).
P. Stefan, “Two proofs of Chow's theorem,” Geometr. Meth. Syst. Theory, Dordrecht-Boston, 159–164 (1973).
P. Stefan, “Accessibility and foliation with singularities,” Bull. Amer. Math. Soc.,80, No. 6, 1142–1145 (1974).
P. Stefan, “Accessible sets, orbits, and foliations with singularities,” Proc. London Math. Soc.,29, No. 4, 699–713 (1974).
P. Stefan, “Accessibility and foliations,” Lect. Notes Math.,468, 10–12 (1975).
P. Stefan, “Integrability of systems of vector fields,” J. London Math. Soc.,21, No. 3, 544–556 (1980).
P. Stefan and J. Taylor, “A remark on a paper of D. L. Elliott,” J. Differ. Equat.,15, No. 1, 210–211 (1974).
G. Stefani and P. Zecca, “Multivalued differential equations on manifolds with application to control theory,” Isr. J. math.,24, No. 4, 560–575 (1980).
R. J. Stern, “On bilinear systems with coinciding attainable sets,” J. Math. Anal, and Appl.,72, No. 1, 329–337 (1979).
R. Su, “On linear equivalents of nonlinear systems,” Systems and Contr. Lett.,2, No. 1, 48–52 (1982).
R. Su and L. R. Hunt, “A natural coordinate system for nonlinear systems,” Proc. 22nd IEEE Conf. Decis. and Contr., San Antonio, Tex., 14–16 Dec. 1983, Vol. 3, New York, 1402–1404 (1983).
R. Su, L. R. Hunt, and G. Meyer, “Theory of design using nonlinear transformations,” Proc. Amer. Contr. Conf. Arlington, Va., June 14–16, 1982, New York, 247–251 (1982).
R. Su, L. R. Hunt, and G. Meyer, “Robustness in nonlinear control,” Differ, Geom. Contr, Theory, Proc. Conf. Mich. Technol. Univ., June 28–July 2, 1982, Boston, 316–340 (1983).
H. J. Sussmann, “Dynamical systems on manifolds: accessibility and controllability,” IEEE Conf. Decis. and Contr. incl. 10th Symp. Adapt. Process., Miami Beach, Fla., 1971, New York, 188–191 (1971).
H. J. Sussmann, “The control problem\(\mathop {\dot x}\limits^{\overline{\overline {}} } = (A(1 - u) + Bu)x\): A comment on an article of J. Kučera,” Czechosl. Mat. J.,22, No. 3, 423–426 (1972).
H. J. Sussmann, “The bang-bang problem for certain control systems in Gl(n,R),” SIAM J. Contr.,10, No. 3, 470–476 (1972).
H, J. Sussmann, “The control problem\(\mathop {\dot x}\limits^{\overline{\overline {}} } = (A(u))x\),” Czechosl. Mat. J.,22, No. 3, 490–494 (1972).
H. J. Sussmann, “An extension of a theorem of Nagano on transitive Lie algebras,” Proc. Amer. Math. Soc.,45, No. 3, 349–356 (1974).
H. J. Sussmann, “Orbits of families of vector fields and integrability of systems with singularities,” Bull. Amer. Math. Soc.,79, No. 1, 197–199 (1973).
H. J. Sussmann, “Orbits of families of vector fields and integrability of distributions,” Trans. Amer. Math. Soc.,180, 171–188 (1973).
H. J. Sussmann, “Minimal realizations of nonlinear systems,” Geometr. Meth. Syst. Theory, Dordrecht-Boston, 243–252 (1973).
H. J. Sussmann, “On quotients of manifolds: a generalization of the closed subgroup theorem,” Bull. Amer. Math. Soc.,80, No. 3, 573–575 (1974).
H. J. Sussmann, “A generalization of the closed subgroup theorem to quotients of arbitrary manifolds,” J. Differ. Geom.,10, No. 1, 151–166 (1975).
H. J. Sussmann, “On the number of directions needed to achieve controllability,” SIAM J. Contr.,13, No. 2, 414–419 (1975).
H. J. Sussmann, “Some properties of vector field systems which are not altered by small perturbations,” J. Differ. Equat.,20, No. 2, 292–315 (1976).
H. J. Sussmann, “Minimal realizations and canonical forms for bilinear systems,” J. Franklin Inst.,301, No. 6, 593–604 (1976).
H. J. Sussmann, “Semigroup representation, bilinear approximation of input-output maps and generalized inputs,” Lect. Notes Econ. and Math. Syst.,131, 172–191 (1976).
H. J. Sussmann, “Existence and uniqueness of minimal realizations of nonlinear systems,” Math. Syst. Theory,10, No. 3, 263–284 (1976–1977).
H. J. Sussmann, “A sufficient condition for local controllability,” SIAM J. Contr. and Optim.,16, No. 5, 790–802 (1978).
H. J. Sussmann, “Subanalytic sets and feedback control,” J. Differ. Equat.,31, No. 1, 31–52 (1979).
H. J. Sussmann, “Generic single-input observability of continuous time polynomial systems,” Proc. 17th IEEE Conf. Decis. and Contr. incl. Symp. Adapt. Processes, San Diego, Calif., 1978, New York, 566–571 (1979).
H. J. Sussmann, “Single-input observability of continuous-time systems,” Math. Syst. Theory,12, No. 4, 371–393 (1979).
H. J. Sussmann, “A bang-bang theorem with bounds on the number of switchings,” SIAM J. Contr. and Optim.,17, No. 5, 629–651 (1979).
H. J. Sussmann, “A bang-bang theorem with bounds on the number of switchings,” Proc. 18th IEEE Conf. Decis. and Contr. incl. Symp. Adapt, Processes, Fort Lauderdale, Fla., 1979, Vol. 1, New York, 473–475 (1979).
H. J. Sussmann, “Piecewise analyticity of optimal cost function and optimal feedback,” AACC Proc. Joint Autom. Control. Conf., Denver, Colo., 1979, New York, 17–22 (1979).
H. J. Sussmann, “Les semi-groupes sous-analytiques et la régularité des commands en boucle fermée,” Astérisque, No. 75–76, 219–226 (1980).
H. J. Sussmann, “Analytic stratifications and control theory,” Proc. Int. Congr. Math., Helsinki, 15–23 Aug. 1978, Vol. 2, Helsinki, 865–872 (1980).
H. J. Sussmann, “Bounds on the number of switchings for trajectories of piecewise analytic vector fields,” J. Differ. Equat.,43, No. 3, 399–418 (1982).
H. J. Sussmann, “Time-optimal control in the plane,” Lect. Notes Contr. and Inf. Sci.,39, 244–260 (1982).
H. J. Sussmann, “Subanalytic sets and optimal control in the plane,” Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8–10, 1982, Vol. 1, New York, 295–299 (1982).
H. J. Sussmann, “Lie brackets, real analyticity, and geometric control,” Differ. Geom. Contr. Theory, Proc. Conf. Mich. Technol. Univ., June 28–July 2, 1982, Boston, 1–116 (1983).
H. J. Sussmann, “Lie brackets and local controllability: a sufficient condition for scalar-input systems,” SIAM J. Contr. and Optim.,21, No. 5, 686–713 (1983).
H. J. Sussmann, “A Lie-Volterra expansion for nonlinear systems,” Lect. Notes Contr. and Inf. Sci.,58, 822–828 (1984).
H. J. Sussmann and V. Jurdjevič, “Controllability of nonlinear systems,” J. Differ. Equat.,12, No. 1, 95–116 (1972).
Y. Takahara, B. Nakano, and H. Kubota, “Stationarization functor and its concrete realizations,” Int. J. Gen. Syst.,9, No. 3, 133–141 (1983).
T. J. Tarn, John W. Clark, and G. M. Huang, “Analytic controllability of quantum mechanical systems,” Lect. Notes Contr. and Inf. Sci.,58, 840–855 (1984).
K. Tchon, “On some applications of transversality theory to system theory,” Syst. and Contr. Lett.,4, No. 3, 149–155 (1984).
K. Tchon, “Towards a global analysis of systems,” Int. J. Gen. Syst.,9, No. 3, 171–175 (1983).
J. Tokarzewski, “Local controllability properties of nonlinear dynamical systems,” Arch, automat, i telemech.,22, No. 3, 175–199 (1977).
J. Tokarzewski, “Controllability of a class of locally-symmetrical nonlinear dynamical systems,” Arch, automat, i telemech.,24, No. 1, 29–41 (1979).
J. Tsinias and V. J. Kalouptsidis, “Transforming a controllable multi-input nonlinear system to a single-input controllable system by feedback,” Syst. and Contr. Lett.,2, No. 3, 173–178 (1981).
J. Tsinias and V. J. Kalouptsidis, “On stabilizability of nonlinear systems,” Proc. 21st IEEE Conf. Decis. and Contr., Orlando, Fla., Dec. 8–10, 1982, Vol. 2, New York, 712–716 (1982).
S. A. Vakhrameev, “On nonlinear differential games of pursuit,” Probl. upr. i teorii inf. (VNR),12, No. 5, 323–333 (1983).
C. Varšan, “Local controllability along a singular trajectory,” Rev. roum. math. pures et appl.,22, No. 7, 1011–1020 (1977).
C. Varšan, “On local controllability for nonlinear control systems,” Rev. roum. math, pures et appl.,29, No. 10, 907–919 (1984).
G. Warnecke, “On singular and bang-bang processes in optimal control,” Lect. Notes Contr. and Inf. Sci.,59, 345–353 (1984).
J. Wei and E. Norman, “Lie algebraic solution of linear differential equations,” J. Math. Phys.,4, 575–581 (1963).
J. Wei and E. Norman, “On global representation of the solutions of linear differential equations,” Proc. Amer. Math. Soc.,15 486–488 (1964).
K. C. Wei, “A class of controllable nonlinear systems,” IEEE Trans. Automat. Contr.,21, No. 5, 787–789 (1976).
K. C. Wei and A. E. Pearson, “On minimum energy control of commutative bilinear systems,” Proc. Joint Automat. Contr. Conf., San Francisco, 1977, Vol. 1, New York, 839–846 (1977).
K. C. Wei and A. E. Pearson, “On minimum energy control of commutative bilinear systems,” IEEE-Trans. Automat. Contr.23, No. 6, 1020–1023 (1978).
K. C. Wei and A. E. Pearson, “Global controllability for a class of bilinear systems,” IEEE Trans. Autom. Contr.,23, No. 3, 486–488 (1978).
J. C. Willems, “Mathematical structures for the study of dynamical phenomena,” Nieuw, arch, wisk., ser. 4,1, No. 2, 159–192 (1983).
M. Zeitz, “Controllability canonical forms (phase-variable) for nonlinear systems,” Int. J. Contr.,37, No. 6, 1449–1457 (1983).
M. Zeitz, “Observability canonical (phase-variable) forms for nonlinear time-variable systems,” Int. J. Syst. Sci.,15, No. 9, 249–258 (1984).