Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects

International Nano Letters - Tập 2 - Trang 1-10 - 2012
Sukumaran Prabhu1, Eldho K Poulose1
1Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur, India

Tóm tắt

Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.

Tài liệu tham khảo

Slawson RM, Trevors JT, Lee H: Silver accumulation and resistance in Pseudomonas stutzeri. Arch. Microbiol. 1992, 158: 398–404. Zhao GJ, Stevens SE: Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals 1998, 11: 27–32. 10.1023/A:1009253223055 Sondi I, Salopek-Sondi B: Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275: 177–182. 10.1016/j.jcis.2004.02.012 Danilcauk M, Lund A, Saldo J, Yamada H, Michalik J: Conduction electron spin resonance of small silver particles. Spectrochimaca. Acta. Part A. 2006, 63: 189–191. 10.1016/j.saa.2005.05.002 Kim JS, Kuk E, Yu K, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim YK, Lee YS, Jeong DH, Cho MH: Antimicrobial effects of silver nanoparticles. Nanomedicine 2007, 3: 95–101. 10.1016/j.nano.2006.12.001 Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO: A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus . J. Biomed. Mater. Res. 2008, 52: 662–668. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T: Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 2003, 69: 4278–4281. 10.1128/AEM.69.7.4278-4281.2003 Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ: The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16: 2346–2353. 10.1088/0957-4484/16/10/059 Hatchett DW, Henry S: Electrochemistry of sulfur adlayers on low-index faces of silver. J. Phys. Chem. 1996, 100: 9854–9859. 10.1021/jp953757z Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D: Characterisation of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007, 18: 1–9. Gaffet E, Tachikart M, El Kedim O, Rahouadj R: Nanostructural materials formation by mechanical alloying: morphologic analysis based on transmission and scanning electron microscopic observations. Mater. Charact 1996, 36: 185–190. 10.1016/S1044-5803(96)00047-2 Amulyavichus A, Daugvila A, Davidonis R, Sipavichus C: Study of chemical composition of nanostructural materials prepared by laser cutting of metals. Fizika Met. Met. 1998, 85: 111–117. Thirumalai Arasu V, Prabhu D, Soniya M: Stable silver nanoparticle synthesizing methods and its applications. J. Bio. Sci. Res. 2010, 1: 259–270. Zhu J, Liao X, Chen H-Y: Electrochemical preparation of silver dendrites in the presence of DNA. Mater. Res. Bull. 2001, 36: 1687–1692. 10.1016/S0025-5408(01)00600-6 Salkar RA, Jeevanandam P, Aruna ST, Koltypin Y, Gedanken A: The sonochemical preparation of amorphous silver nanoparticles. J. Mater. Chem. 1999, 9: 1333–1335. 10.1039/a900568d Mandal S, Arumugam S, Pasricha R, Sastry M: Silver nanoparticles of variable morphology synthesized in aqueous foams as novel templates. Bull. Mater. Sci. 2001, 28: 503–510. Jiang H, Moon K, Zhang Z, Pothukuchi S, Wong CP: Variable frequency microwave synthesis of silver nanoparticles. J. Nanopart. Res. 2006, 8: 117–124. 10.1007/s11051-005-7522-6 Esumi K, Tano T, Torigue K, Meguro K: Preparation and characterization of bimetallic Pd-Cu colloids by thermal decomposition of their acetate compounds in organic solvents. Chem. Mater. 1990, 2: 564–56. 10.1021/cm00011a019 Pileni MP: Fabrication and physical properties of self-organized silver nanocrystals. Pure Appl. Chem. 2000, 72: 53–65. 10.1351/pac200072010053 Sun YP, Atorngitjawat P, Meziani MJ: Preparation of silver nanoparticles via rapid expansion of water in carbon dioxide microemulsion into reductant solution. Langmuir 2001, 17: 5707–5710. 10.1021/la0103057 Tien DC, Tseng KH, Liao CY, Tsung TT: Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus . Med. Eng. Phys. 2007, 30: 948–952. Sergeev MB, Kasaikin AV, Litmanovich AE: Cryochemical synthesis and properties of silver nanoparticle dispersions stabilised by poly(2-dimethylaminoethyl methacrylate). Mendeleev. Commun. 1999, 9: 130–132. 10.1070/MC1999v009n04ABEH001080 Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G: Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 2008, 62: 4411–4413. 10.1016/j.matlet.2008.06.051 Parashar UK, Saxena SP, Srivastava A: Bioinspired synthesis of silver nanoparticles. Dig. J. Nanomat. Biostruct. 2009, 4: 159–166. Haefeli C, Franklin C, Hardy K: Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J. Bacteriol. 1984, 158: 389–392. Husseiny MI, Aziz MAE, Badr Y, Mahmoud MA: Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa . Spectrochimica. Acta. Part A. 2006, 67: 1003–1006. Vaidyanathan R, Gopalram S, Kalishwaralal K, Deepak V, Pandian SR, Gurunathan S: Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surf. B Biointerfaces 2010, 75: 335–341. 10.1016/j.colsurfb.2009.09.006 Anil Kumar S, Majid KA, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI: Nitrate reductase mediated synthesis of silver nanoparticles from AgNO3. Biotechnol. Lett. 2007, 29: 439–445. 10.1007/s10529-006-9256-7 Fu JK, Liu Y, Gu P, Tang DL, Lin ZY, Yao BX, Weng S: Spectroscopic characterization on the biosorption and bioreduction of Ag(I) by Lactobacillus sp. A09. Acta. Physico-Chimica. Sinica. 2000, 16: 770–782. Tanja K, Ralph J, Eva O, Claes-Göran G: Silver-based crystalline nanoparticles, microbially fabricated. PNAS 1999, 96: 13611–13614. 10.1073/pnas.96.24.13611 Fu JK, Zhang WD, Liu YY, Lin ZY, Yao BX, Weng SZ, Zeng JL: Characterization of adsorption and reduction of noble metal ions by bacteria. Chem. J. Chin. Univ. 1999, 20: 1452–1454. Lengke FM, Fleet EM, Southam G: Biosynthesis of silver nanoparticles by filamentous cyanobacteria a from a silver(I) nitrate complex. Langmuir 2007, 23: 2694–2699. 10.1021/la0613124 Minaeian S, Shahverdi RA, Nohi SA, Shahverdi RH: Extracellular biosynthesis of silver nanoparticles by some bacteria. J. Sci. I. A. U. 2008,17(66):1–4. El-Shanshoury AER, ElSilk SE, Ebeid ME: Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633, and Streptococcus thermophilus ESh1 and their antimicrobial activities. ISRN Nanotechnology 2011, 2011: 1–7. Kalimuthu K, Babu RS, Venkataraman D, Bilal M, Gurunathan S: Biosynthesis of silver nanocrystals by Bacillus licheniformis . Colloids Surf. B Biointerfaces 2008, 65: 150–153. 10.1016/j.colsurfb.2008.02.018 Sintubin L, De Windt W, Dick J, Mast J, van der Ha D, Verstraete W, Boon N: Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 2009, 84: 741–749. 10.1007/s00253-009-2032-6 Mokhtari M, Deneshpojouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi RH, Shahverdi RA: Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia : the effects of visible-light irradiation and the liquid mixing process. Mater. Res. Bull. 2009, 44: 1415–1421. 10.1016/j.materresbull.2008.11.021 Samadi N, Golkaran D, Eslamifar A, Jamalifar H, Fazeli MR, Mohseni FA: Intra/extracellular biosynthesis of silver nanoparticles by an autochthonous strain of Proteus mirabilis isolated from photographic waste. J. Biomed. Nanotechnol. 2009, 5: 247–253. 10.1166/jbn.2009.1029 Kalishwaralal K, Deepak V, Pandiana SBRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S: Biosynthesis of silver and gold nanoparticles using Brevibacterium casei . Colloids Surf. B Biointerfaces 2010, 77: 257–262. 10.1016/j.colsurfb.2010.02.007 Mohanpuria P, Rana KN, Yadav SK: Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart. Res. 2008, 10: 507–517. 10.1007/s11051-007-9275-x Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parischa R, Ajaykumar PV, Alam M, Kumar R, Sastry M: Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 2001, 1: 515–519. 10.1021/nl0155274 Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M: Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum . Colloids Surf. B Biointerfaces 2003, 28: 313–318. 10.1016/S0927-7765(02)00174-1 Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R: Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed 2001, 40: 3585–3588. 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K Chen JC, Lin ZH, Ma XX: Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 3.2883 with silver nitrate. Lett. Appl. Microbiol. 2003, 37: 105–108. 10.1046/j.1472-765X.2003.01348.x Duran N, Marcato DP, Alves LO, De Souza G, Esposito E: Mechanical aspect of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology 2005, 3: 8–15. 10.1186/1477-3155-3-8 Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH: Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium . Colloids Surf. B Biointerfaces 2006, 53: 55–59. 10.1016/j.colsurfb.2006.07.014 Bhainsa CK, D’Souza FS: Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus funigatus . Colloids Surf. B Biointerfaces 2006, 47: 160–164. 10.1016/j.colsurfb.2005.11.026 Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH: Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus . Mater. Lett. 2007, 66: 1413–1418. Basavaraja S, Balaji SD, Lagashetty A, Rajasabd AH, Venkataraman A: Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum . Mater. Res. Bull 2008, 43: 1164–1170. 10.1016/j.materresbull.2007.06.020 Sanghi R, Verma P: Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour. Technol. 2009, 100: 501–504. 10.1016/j.biortech.2008.05.048 Gade A, Ingle A, Bawaskar M, Rai M: Fusarium solani : a novel biological agent for extracellular synthesis of nanoparticles. J. Nanopart. Res. 2009, 11: 2079–2085. 10.1007/s11051-008-9573-y Verma VC, Kharwar RN, Gange AC: Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus . Nanomedicine 2010, 5: 33–40. 10.2217/nnm.09.77 Jha AK, Prasad K, Prasad K, Kulkarni AR: Plant system: nature's nanofactory. Colloids Surf. B Biointerfaces 2009, 73: 219–223. 10.1016/j.colsurfb.2009.05.018 Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M: Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 2003, 19: 1357–1361. 10.1021/la020835i Shankar SS, Rai A, Ahmad A, Sastry M: Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem ( Azadirachta indica ) leaf broth. J. Colloid Interface Sci. 2004, 275: 496–502. 10.1016/j.jcis.2004.03.003 Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M: Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 2006, 22: 577–583. 10.1021/bp0501423 Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N: Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnol. 2007, 18: 1–11. Jain D, Kumar Daima H, Kachhwaha S, Kothari SL: Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest Journal of Nanomaterials and Biostructures 2009, 4: 557–563. Sathishkumar M, Sneha K, Won SW, Cho C-W, Kim S, Yun Y-S: Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces 2009, 73: 332–338. 10.1016/j.colsurfb.2009.06.005 Bar H, Bhui KD, Sahoo PG, Sarkar P, De PS, Misra A: Green synthesis of silver nanoparticles using latex of Jatropha curcas . Colloids Surf. A Physicochem. Eng. Asp. 2009, 339: 134–139. 10.1016/j.colsurfa.2009.02.008 Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR: Biosynthesis of silver nanoparticles from Desmodium triflorum : a novel approach towards weed utilization. Biotechnology Research International 2011, 2011: 1–8. 10.4061/2011/454090 Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN: Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv. Sci. Lett. 2010, 3: 138–143. 10.1166/asl.2010.1099 Mallikarjuna K, Dillip GR, Narasimha G, John Sushma N, Deva Prasad Raju B: Phytofabrication and characterization of silver nanoparticles from Piper betle broth. Res. J. Nanosci. Nanotechnol. 2012, 2: 17–23. 10.3923/rjnn.2012.17.23 Kirsner R, Orsted H, Wright B: Matrix metalloproteinases in normal and impaired wound healing: a potential role of nanocrystalline silver. Wounds 2001, 13: 5–10. Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK: Tropical delivery of silver nanoparticles promotes wound healing. Chem. Med. Chem. 2007, 2: 129–136. Shin SH, Ye MK, Kim HS, Kang HS: The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int. Immunopharmacol. 2007, 7: 1813–1818. 10.1016/j.intimp.2007.08.025 Burrell RE, McIntosh CL, Morris LR: Process of activating anti-microbial materials. Patent 1995, 5454886: 3. Nano Bio Technology: Revolutionary medical bandage using nanotechnology to fight infection. (2010). Accessed 15 Sept 2012 http://nanobiotechnews.com/revolutionary-medical-bandage-using-nanotechnology-to-fight-infection.html (2010). Accessed 15 Sept 2012 Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Scheddin D, Domann E, Schnettler R: Nanoparticulate silver. A new antimicrobial substance for bone cement. Orthopade 2004, 33: 885–892. Morley KS, Webb PB, Tokareva NV, Krasnov AP, Popov VK, Zhang J, Roberts CJ, Howdle SM: Synthesis and characterisation of advanced UHMWPE/silver nanocomposites for biomedical applications. Eur. Polym. J. 2007, 43: 307–314. 10.1016/j.eurpolymj.2006.10.011 Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Libertino JA, Summerhayes IC: In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surg. Infect. 2007, 8: 397–403. 10.1089/sur.2006.032 Brady MJ, Lissay CM, Yurkovetskiy AV, Sarwan SP: Persistent silver disinfectant for environmental control of pathogenic bacteria. Am. J. Infect. Control 2003, 31: 208–214. 10.1067/mic.2003.23 Zhou W, Ma YY, Yang HA, Ding Y, Luo XG: A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int. J. Nanomed. 2011, 6: 381–386. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN: In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebra fish embryos. ACS Nano 2007, 1: 133–143. 10.1021/nn700048y Loo C, Lowery A, Halas N, West J, Drezek R: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 2005, 5: 709–711. 10.1021/nl050127s Di Vincenzo GD, Giordano CJ, Schriever LS: Biologic monitoring of workers exposed to silver. Int. Arch. Occup. Environ. Health 1985, 56: 207–215. 10.1007/BF00396598 Panyala NR, Pena-Mendez EM, Havel J: Silver or silver nanoparticles: a hazardous threat to the environment and human health? J. Appl. Biomed. 2008, 6: 117–129. Allsopp M, Walters A, Santillo D: Nanotechnologies and Nanomaterials in Electrical and Electronic Goods: A Review of Uses and Health Concerns. Greenpeace Research Laboratories, London; 2007. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ: In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005, 19: 975–983. 10.1016/j.tiv.2005.06.034 Soto KF, Murr LE, Garza KM: Cytotoxic responses and potential respiratory health effects of carbon and carbonaceous nanoparticulates in the Paso del Norte airshed environment. Int. J. Environ. Res. Public Health 2008, 5: 12–25. 10.3390/ijerph5010012 Kone BC, Kaleta M, Gullans SR: Silver ion (Ag+)-induced increases in cell membrane K+ and Na+ permeability in the renal proximal tubule: reversal by thiol reagents. J. Membr. Biol. 1988, 102: 11–19. 10.1007/BF01875349 McAuliffe ME, Perry MJ: Are nanoparticles potential male reproductive toxicants? A literature review. Nanotoxicol 2007, 1: 204–210. 10.1080/17435390701675914 Burd A, Kwok CH, Hung SC, Chan HS, Gu H, Lam WK, Huang L: A comparative study of the cytotoxicity of silver-based dressings in monolayer cell, tissue explant, and animal models. Wound. Rep. Reg. 2007, 15: 94–104. 10.1111/j.1524-475X.2006.00190.x Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, Chang HK, Lee JH, Oh KH, Kelman BJ, Hwang IK, Yu IJ: Subchronic oral toxicity of silver nanoparticles. Part. Fibre Toxicol. 2010, 7: 20. 10.1186/1743-8977-7-20 Kittler S, Greulich C, Diendorf J, Köller M, Epple M: Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010, 22: 4548–4554. 10.1021/cm100023p Senjen R: Nanosilver - a threat to soil, water and human health? Friends of the Earth Australia. (2007). Accessed 17 May 2012 http://nano.foe.org.au/sites/default/files/Nanosilver%20-%20a%20threat%20to%20soil,%20water%20and%20health%20March%202007.pdf (2007). Accessed 17 May 2012 Wood CM, Playle RC, Hogstrand C: Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ. Toxicol. Chem. 1993, 18: 71–83. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ: Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna . J. Nanobiotechnology 2012, 10: 14. 10.1186/1477-3155-10-14