A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera
Tóm tắt
Từ khóa
Tài liệu tham khảo
Spivak, J. L. The chronic myeloproliferative disorders: clonality and clinical heterogeneity. Semin. Hematol. 41 (2 suppl. 3), 1–5 (2004)
Prchal, J. T. Polycythemia vera and other primary polycythemias. Curr. Opin. Hematol. 12, 112–116 (2005)
Prchal, J. F. & Axelrad, A. A. Bone-marrow responses in polycythemia vera. N. Engl. J. Med. 290, 1382 (1974)
Casadevall, N. et al. Erythroid progenitors in polycythemia vera. Demonstration of their hypersensitivity to erythropoietin using serum-free cultures. Blood 59, 447–451 (1982)
Ugo, V. et al. Multiple signaling pathways are involved in erythropoietin-independent differentiation of erythroid progenitors in polycythemia vera. Exp. Hematol. 32, 179–187 (2004)
Witthuhn, B. A. et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74, 227–236 (1993)
Bernabei, P. et al. Interferon-gamma receptor 2 expression as the deciding factor in human T, B, and myeloid cell proliferation or death. J. Leukoc. Biol. 70, 950–960 (2001)
Kralovics, R., Guan, Y. & Prchal, J. T. Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp. Hematol. 30, 229–236 (2002)
Najfeld, V., Montella, L., Scalise, A. & Fruchtman, S. Exploring polycythaemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected. Br. J. Haematol. 119, 558–566 (2002)
Kralovics, R., Stockton, D. W. & Prchal, J. T. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood 102, 3793–3796 (2003)
Saharinen, P., Takaluoma, K. & Silvennoinen, O. Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Mol. Cell. Biol. 20, 3387–3395 (2000)
Saharinen, P., Vihinen, M. & Silvennoinen, O. Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Mol. Biol. Cell 14, 1448–1459 (2003)
Lindauer, K., Loerting, T., Liedl, K. R. & Kroemer, R. T. Prediction of the structure of human Janus kinase 2 (JAK2) comprising the two carboxy-terminal domains reveals a mechanism for autoregulation. Protein Eng. 14, 27–37 (2001)
Argetsinger, L. S. et al. Autophosphorylation of JAK2 on tyrosines 221 and 570 regulates its activity. Mol. Cell. Biol. 24, 4955–4967 (2004)
Feener, E. P., Rosario, F., Dunn, S. L., Stancheva, Z. & Myers, M. G. J. Tyrosine phosphorylation of Jak2 in the JH2 domain inhibits cytokine signaling. Mol. Cell. Biol. 24, 4968–4978 (2004)
Luo, H. et al. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell. Biol. 17, 1562–1571 (1997)
Kohlhuber, F. et al. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol. Cell. Biol. 17, 695–706 (1997)
Lacronique, V. et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997)
Huang, L. J., Constantinescu, S. N. & Lodish, H. F. The N-terminal domain of Janus kinase 2 is required for Golgi processing and cell surface expression of erythropoietin receptor. Mol. Cell 8, 1327–1338 (2001)
Zhao, S. et al. JAK2, complemented by a second signal from c-kit or flt-3, triggers extensive self-renewal of primary multipotential hemopoietic cells. EMBO J. 21, 2159–2167 (2002)
Pearson, T. C. & Messinezy, M. The diagnostic criteria of polycythaemia rubra vera. Leuk. Lymphoma 22 (suppl. 1), 87–93 (1996)
Cools, J. et al. Genomic organization of human JAK2 and mutation analysis of its JH2-domain in leukemia. Cytogenet. Cell Genet. 85, 260–266 (1999)
Le Coniat, M., Romana, S. P. & Berger, R. Partial chromosome 21 amplification in a child with acute lymphoblastic leukemia. Genes Chromosom. Cancer 14, 204–209 (1995)
Dumoutier, L., Van Roost, E., Colau, D. & Renauld, J. C. Human interleukin-10-related T cell-derived inducible factor: molecular cloning and functional characterization as an hepatocyte-stimulating factor. Proc. Natl Acad. Sci. USA 97, 10144–10149 (2000)
Chagraoui, H. et al. Stimulation of osteoprotegerin production is responsible for osteosclerosis in mice overexpressing TPO. Blood 101, 2983–2989 (2003)