Rapid determination of particle velocity from space-time images using the Radon transform

Patrick J. Drew1, Pablo Blinder1, Gert Cauwenberghs2,3, Andy Y. Shih1, David Kleinfeld1,2
1Department of Physics, University of California at San Diego, La Jolla, USA
2Graduate Program in Neurosciences, University of California at San Diego, La Jolla, USA
3Section on Neurobiology, University of California at San Diego, La Jolla, USA

Tóm tắt

Laser-scanning methods are a means to observe streaming particles, such as the flow of red blood cells in a blood vessel. Typically, particle velocity is extracted from images formed from cyclically repeated line-scan data that is obtained along the center-line of the vessel; motion leads to streaks whose angle is a function of the velocity. Past methods made use of shearing or rotation of the images and a Singular Value Decomposition (SVD) to automatically estimate the average velocity in a temporal window of data. Here we present an alternative method that makes use of the Radon transform to calculate the velocity of streaming particles. We show that this method is over an order of magnitude faster than the SVD-based algorithm and is more robust to noise.

Từ khóa


Tài liệu tham khảo

Averbuch, A., Coifman, R. R., Donoho, D. L., Israeli, M., & Walden, J. (2001). Fast slant stack: A notion of radon transform for data on a cartesian grid which is rapidly computable, algebraically exact, geometrically faithful, and invertible. In: Technical Report (University S, ed). Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13, 111–122. doi:10.1016/0031-3203(81)90009-1. Chaigneau, E., Oheim, M., Audinat, E., & Charpak, S. (2003). Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proceedings of the National Academy of Sciences of the United States of America, 100, 13081–13086. doi:10.1073/pnas.2133652100. Chao, S. H., Holl, M. R., Koschwanez, J. H., Carlson, R. H., Jang, L. S., & Meldrum, D. R. (2005). Velocity measurement in microchannels with a laser confocal microscope and particle linear image velocimetry. Microfluidics and Nanofluidics, 1, 155–160. doi:10.1007/s10404-004-0023-6. Deans, S. R. (1983). The Radon transform and some of its applications. New York: Wiley and Sons. Fukumura, D., & Jain, R. K. (2008). Imaging angiogenesis and the microenvironment. Acta Pathologica, Microbiologica et Immunologica Scandinavica, 116, 695–715. Göbel, W., Kampa, B. M., & Helmchen, F. (2007). Imaging cellular network dynamics in three dimensions using fast 3D laser scanning. Nature Methods, 4, 73–79. doi:10.1038/nmeth989. Golub, G. H., & Kahan, W. (1965). Calculating singular values and pseudo-inverse of a matrix. Philadelphia: Society for Industrial and Applied Mathematics. Gotze, W. A., & Druckmuller, H. J. (1996). A fast digital Radon transform–an efficient means for evaluating the Hough transform. Pattern Recognition, 28, 1985–2992. Helmchen, F., & Kleinfeld, D. (2008). In vivo measurements of blood flow and glial cell function with two-photon laser scanning microscopy. Methods in Enzymology, 444, 231–254. doi:10.1016/S0076-6879(08)02810-3. Hutchinson, E. B., Stefanovic, B., Koretsky, A. P., & Silva, A. C. (2006). Spatial flow-volume dissociation of the cerebral microcirculatory response to mild hypercapnia. NeuroImage, 32, 520–530. doi:10.1016/j.neuroimage.2006.03.033. Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nature Reviews. Neuroscience, 5, 347–360. doi:10.1038/nrn1387. Kang, J. J., Toma, I., Sipos, A., McCulloch, F., & Peti-Peterd, J. (2006). Quantitative imaging of basic functions in renal (patho) physiology. American Journal of Physiology. Renal Physiology, 291, F495–F502. doi:10.1152/ajprenal.00521.2005. Kleinfeld, D., & Denk, W. (2005). Imaging in neuroscience and development. In R. Yuste & A. Konnerth (Eds.), Two-photon imaging of cortical microcirculation (pp. 701–705). Cold Spring Harbor: Cold Spring Harbor Laboratory Press. Kleinfeld, D., Mitra, P. P., Helmchen, F., & Denk, W. (1998). Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 15741–15746. doi:10.1073/pnas.95.26.15741. Kleinfeld, D., Friedman, B., Lyden, P. D., & Shih, A. Y. (2008). Animal models of acute neurological injuries. In J. Chen, Z. Xu, X.-M. Xu & J. Zhang (Eds.), Targeted occlusion to surface and deep vessels in neocortex via linear and nonlinear optical absorption. Totowa: Humana. Nguyen, Q.-T., Tsai, P. S., & Kleinfeld, D. (2006). MPScope: a versatile software suite for multiphoton microscopy. Journal of Neuroscience Methods, 156, 351–359. doi:10.1016/j.jneumeth.2006.03.001. Nguyen, Q.-T., Dolnick, E. M., Driscoll, J., & Kleinfeld, D. (2009). Methods for in vivo optical imaging. In R. D. Frostig (Ed.), MPScope 2.0: A computer system for two-photon laser scanning microscopy with concurrent plasma-mediated ablation and electrophysiology (2nd ed., pp. 117–142). Boca Raton: CRC. Nishimura, B., Schaffer, C. B., Friedman, B., Lyden, P. D., & Kleinfeld, D. (2007). Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proceedings of the National Academy of Sciences of the United States of America, 104, 365–370. doi:10.1073/pnas.0609551104. O’Brien, J. T., Erkinjuntti, T., Reisberg, B., Roman, G., Sawada, T., Pantoni, L., et al. (2003). Vascular cognitive impairment. The Lancet Neurology, 2, 89–98. doi:10.1016/S1474-4422(03)00305-3. Petzold, G. C., Albeanu, D. F., Sato, T. F., & Murthy, V. N. (2008). Coupling of neural activity to blood flow in olfactory glomeruli is mediated by astrocytic pathways. Neuron, 58, 879–910. doi:10.1016/j.neuron.2008.04.029. Schaffer, C. B., Friedman, B., Nishimura, N., Schroeder, L. F., Tsai, P. S., Ebner, F. F., et al. (2006). Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion. Public Library of Science Biology, 4, 258–270. Shih, A.Y., Friedman, B., Drew, P. J., Tsai, P. S., Lyden, P. D., & Kleinfeld, D. (2009). Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke. Journal of Cerebral Blood Flow and Metabolism, 29, 738-751. doi:10.1038/jcbfm.2008.166. Sourice, A., & Plantier, G. (2005). Red blood cell velocity estimation in microvessels using the spatiotemporal autocorrelation. Measurement Science & Technology, 16, 2229–2239. doi:10.1088/0957-0233/16/11/014. Stefanovic, B., Hutchinson, E., Yakovleva, V., Schram, V., Russell, J. T., Belluscio, L., et al. (2007). Functional reactivity of cerebral capillaries. Journal of Cerebral Blood Flow and Metabolism, 28, 961–972. doi:10.1038/sj.jcbfm.9600590. Tsai, P. S., & Kleinfeld, D. (2009). Methods for in vivo optical imaging. In R. D. Frostig (Ed.), In vivo two-photon laser scanning microscopy with concurrent plasma-mediated ablation: Principles and hardware realization (2nd ed., pp. 59–115). Boca Raton: CRC. Tsai, P. S., Nishimura, N., Yoder, E. J., Dolnick, E. M., White, G. A., & Kleinfeld, D. (2002). In vivo optical imaging of brain function. In R. D. Frostig (Ed.), Principles, design, and construction of a two photon laser scanning microscope for in vitro and in vivo brain imaging (pp. 113–171). Boca Raton: CRC. Tsai, P. S., Friedman, B., Ifarraguerri, A. I., Thompson, B. D., Lev-Ram, V., Schaffer, C. B., et al. (2003). All-optical histology using ultrashort laser pulses. Neuron, 39, 27–41. doi:10.1016/S0896-6273(03)00370-2. Villringer, A., Haberl, R. L., Dirnagl, U., Anneser, F., Verst, M., & Einhaupl, K. M. (1989). Confocal laser microscopy to study microcirculation on the rat brain surface in vivo. Brain Research, 504, 159–160. doi:10.1016/0006-8993(89)91616-8. Zhang, S., Boyd, J., Delaney, K., & Murphy, T. H. (2005). Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia. The Journal of Neuroscience, 25, 5333–5338. doi:10.1523/JNEUROSCI.1085-05.2005.