Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants

Journal of Hazardous Materials - Tập 211 - Trang 427-435 - 2012
Divina A. Navarro1, Mary A. Bisson2, Diana S. Aga1
1Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, United States
2Department of Biology, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, United States

Tài liệu tham khảo

Wiesner, 2006, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol., 40, 4336, 10.1021/es062726m Owen, 2007, Formulating the problems for environmental risk assessment of nanomaterials, Environ. Sci. Technol., 41, 5582, 10.1021/es072598h Hobson, 2009, Commercialization of nanotechnology, Wiley Interdisciplinary Rev.: Nanomed. Nanobiotechnol., 1, 189, 10.1002/wnan.28 Graham-Rowe, 2009, From dots to devices, Nat. Photon., 3, 307, 10.1038/nphoton.2009.79 Navarro, 2009, Natural organic matter-mediated phase transfer of quantum dots in the aquatic environment, Environ. Sci. Technol., 43, 677, 10.1021/es8017623 Kiser, 2009, Titanium nanomaterial removal and release from wastewater treatment plants, Environ. Sci. Technol., 43, 6757, 10.1021/es901102n Kim, 2010, Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products, Environ. Sci. Technol., 44, 7509, 10.1021/es101565j Navarro, 2010, Partitioning of hydrophobic CdSe quantum dots into aqueous dispersions of humic substances: influence of capping-group functionality on the phase-transfer mechanism, J. Colloid Interface Sci., 348, 119, 10.1016/j.jcis.2010.04.021 Jaisi, 2009, Single-walled carbon nanotubes exhibit limited transport in soil columns, Environ. Sci. Technol., 43, 9161, 10.1021/es901927y Lecoanet, 2004, Laboratory assessment of the mobility of nanomaterials in porous media, Environ. Sci. Technol., 38, 5164, 10.1021/es0352303 Lin, 2009, Uptake, translocation, and transmission of carbon nanomaterials in rice plants, Small, 5, 1128 Bouldin, 2008, Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubia, Environ. Toxicol. Chem., 27, 1958, 10.1897/07-637.1 Oberdorster, 2004, Translocation of inhaled ultrafine particles to the brain, Inhal. Toxicol., 16, 437, 10.1080/08958370490439597 Kirchner, 2005, Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles, Nano Lett., 5, 331, 10.1021/nl047996m Carpita, 1979, Determination of the pore-size of cell walls of living plant cells, Science, 205, 1144, 10.1126/science.205.4411.1144 Lin, 2008, Root uptake and phytotoxicity of ZnO nanoparticles, Environ. Sci. Technol., 42, 5580, 10.1021/es800422x Low, 1994, Endocytosis in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 45, 609, 10.1146/annurev.pp.45.060194.003141 Scott, 2008 Rico, 2011, Interaction of nanoparticles with edible plants and their possible implications in the food chain, J. Agric. Food Chem., 59, 3485, 10.1021/jf104517j Ma, 2010, Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation, Sci. Total Environ., 408, 3053, 10.1016/j.scitotenv.2010.03.031 Al-Salim, 2011, Quantum dot transport in soil, plants, and insects, Sci. Total Environ., 409, 3237, 10.1016/j.scitotenv.2011.05.017 Lee, 2008, Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles, Environ. Toxicol. Chem., 27, 1915, 10.1897/07-481.1 Wild, 2009, Novel method for the direct visualization of in vivo nanomaterials and chemical interactions in plants, Environ. Sci. Technol., 43, 5290, 10.1021/es900065h Whiteside, 2009, The brighter side of soils: quantum dots track organic nitrogen through fungi and plants, Ecology, 90, 100, 10.1890/07-2115.1 Doshi, 2008, Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities, Environ. Res., 106, 296, 10.1016/j.envres.2007.04.006 Birbaum, 2010, No evidence for cerium dioxide nanoparticle translocation in maize plants, Environ. Sci. Technol., 44, 8718, 10.1021/es101685f Yang, 2006, Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach, Biol. Trace Elem. Res., 110, 179, 10.1385/BTER:110:2:179 Zheng, 2005, Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach, Biol. Trace Elem. Res., 104, 83, 10.1385/BTER:104:1:083 Lee, 2010, Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana, Environ. Toxicol. Chem., 29, 669, 10.1002/etc.58 Navarro, 2008, Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicology, 17, 372, 10.1007/s10646-008-0214-0 Anikeeva, 2009, Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum, Nano Lett., 9, 2532, 10.1021/nl9002969 Luque, 2007, Solar cells based on quantum dots: multiple exciton generation and intermediate bands, MRS Bull., 32, 236, 10.1557/mrs2007.28 Resch-Genger, 2008, Quantum dots versus organic dyes as fluorescent labels, Nat. Methods, 5, 763, 10.1038/nmeth.1248 Mancini, 2008, Oxidative quenching and degradation of polymer-encapsulated quantum dots: new insights into the long-term fate and toxicity of nanocrystals in vivo, J. Am. Chem. Soc., 130, 10836, 10.1021/ja8040477 International Humic Substances Society, 13C NMR estimates of carbon distribution in IHSS samples, http://www.ihss.gatech.edu/thornmr.html (2008). Gibeaut, 1997, Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions, Plant Physiol., 115, 317, 10.1104/pp.115.2.317 Xiang, 2001, The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels, Plant Physiol., 126, 564, 10.1104/pp.126.2.564 Guan, 2003, A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples, J. Pharm. Biomed. Anal., 31, 251, 10.1016/S0731-7085(02)00594-0 Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, 408 (2000) 796–815. Katari, 1994, X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface, J. Phys. Chem., 98, 4109, 10.1021/j100066a034 Verbruggen, 2009, Mechanisms to cope with arsenic or cadmium excess in plants, Curr. Opin. Plant Biol., 12, 364, 10.1016/j.pbi.2009.05.001 Terry, 2000, Selenium in higher plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 51, 401, 10.1146/annurev.arplant.51.1.401 Lux, 2011, Root responses to cadmium in the rhizosphere: a review, J. Exp. Bot., 62, 21, 10.1093/jxb/erq281 White, 2004, Interactions between selenium and sulphur nutrition in Arabidopsis thaliana, J. Exp. Bot., 55, 1927, 10.1093/jxb/erh192 Kramer, 2007, Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana, J. Exp. Bot., 58, 3005, 10.1093/jxb/erm155 Zhang, 2009, Size-dependent endocytosis of nanoparticles, Adv. Mater., 21, 419, 10.1002/adma.200801393 Slaveykova, 2009, Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions, Environ. Pollut. (Oxford, U.K.), 157, 3445 Evangelou, 2004, The influence of humic acids on the phytoextraction of cadmium from soil, Chemosphere, 57, 207, 10.1016/j.chemosphere.2004.06.017 Nikbakht, 2008, Effect of humic acid on plant growth, nutrient uptake, and postharvest life of Gerbera, J. Plant Nutr., 31, 2155, 10.1080/01904160802462819 Kalis, 2006, Effects of humic acid and competing cations on metal uptake by Lolium perenne, Environ. Toxicol. Chem., 25, 702, 10.1897/04-576R.1 Cho, 2007, Long-term exposure to CdTe quantum dots causes functional impairments in live cells, Langmuir, 23, 1974, 10.1021/la060093j Mahendra, 2008, Quantum dot weathering results in microbial toxicity, Environ. Sci. Technol., 42, 9424, 10.1021/es8023385 Gagne, 2008, Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity, Aquat. Toxicol., 86, 333, 10.1016/j.aquatox.2007.11.013 Szalai, 2009, Glutathione as an antioxidant and regulatory molecule in plants under abiotic stress conditions, J. Plant Growth Regul., 28, 66, 10.1007/s00344-008-9075-2 Cobbett, 2002, Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol., 53, 159, 10.1146/annurev.arplant.53.100301.135154 Tausz, 2004, The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid?, J. Exp. Bot., 55, 1955, 10.1093/jxb/erh194 Shen, 2000, Dual role of glutathione in selenite-induced oxidative stress and apoptosis in human hepatoma cells, Free Radic. Biol. Med., 28, 1115, 10.1016/S0891-5849(00)00206-9 Valko, 2006, Free radicals, metals and antioxidants in oxidative stress-induced cancer, Chem. Biol. Interact., 160, 1, 10.1016/j.cbi.2005.12.009 Clemens, 2006, Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants, Biochimie, 88, 1707, 10.1016/j.biochi.2006.07.003 Leverrier, 2007, Metal binding to ligands: cadmium complexes with glutathione revisited, Anal. Biochem., 371, 215, 10.1016/j.ab.2007.07.015 Grill, 1989, Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase), Proc. Natl. Acad. Sci. U.S.A., 86, 6838, 10.1073/pnas.86.18.6838 Grill, 1985, Phytochelatins: the principal heavy-metal complexing peptides of higher plants, Science (Washington, DC, U.S.), 230, 674, 10.1126/science.230.4726.674 Navarro, 2011, Differences in soil mobility and degradability between water-dispersible CdSe and CdSe/ZnS quantum dots, Environ. Sci. Technol., 45, 6343, 10.1021/es201010f Silver, 2005, Photoactivation of quantum dot fluorescence following endocytosis, Nano Lett., 5, 1445, 10.1021/nl050808n