Microbial biofilm monitoring by electrochemical transduction methods
Tài liệu tham khảo
Donlan, 2002, Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15, 167, 10.1128/CMR.15.2.167-193.2002
Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821
Singh, 2006, Biofilms: implications in bioremediation, Trends Microbiol., 14, 389, 10.1016/j.tim.2006.07.001
Logan, 2009, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol., 7, 375, 10.1038/nrmicro2113
Mattila-Sandholm, 1992, biofilm formation in the industry: a review, Food Rev. Int., 8, 573, 10.1080/87559129209540953
Macià, 2018, Microbiological diagnosis of biofilm-related infections, Enferm. Infecc. Microbiol. Clín., 36, 375, 10.1016/j.eimc.2017.04.006
Telegdi, 2017, Microbiologically influenced corrosion (MIC), in: trends oil gas corros, Res. Technol. Prod. Transm., 191
Khatoon, 2018, Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention, Heliyon, 4, 10.1016/j.heliyon.2018.e01067
Joo, 2012, Molecular basis of in vivo biofilm formation by bacterial pathogens, Chem. Biol., 19, 1503, 10.1016/j.chembiol.2012.10.022
Darouiche, 2001, Device-associated infections: a macroproblem that starts with microadherence, Clin. Infect. Dis., 33, 1567, 10.1086/323130
Metcalf, 2013, Biofilm delays wound healing: a review of the evidence, Burn. Trauma., 1, 5, 10.4103/2321-3868.113329
Kirchhain, 2019, Biosensors for measuring matrix metalloproteinases: an emerging research field, TrAC Trends Anal. Chem. (Reference Ed.), 110, 35, 10.1016/j.trac.2018.10.027
Percival, 2015, Healthcare-Associated infections, medical devices and biofilms: risk, tolerance and control, J. Med. Microbiol., 64, 323, 10.1099/jmm.0.000032
Flemming, 2016, Biofilms: an emergent form of bacterial life, Nat. Rev. Microbiol., 14, 563, 10.1038/nrmicro.2016.94
Ruckenstein, 2005, Surface modification and functionalization through the self-assembled monolayer and graft polymerization, Adv. Colloid Interface Sci., 113, 43, 10.1016/j.cis.2004.07.009
Samanta, 2018, Early pH change predicts intensive care unit mortality, Indian J. Crit. Care Med., 22, 697, 10.4103/ijccm.IJCCM_129_18
Desrousseaux, 2013, Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation, J. Hosp. Infect., 85, 87, 10.1016/j.jhin.2013.06.015
Chen, 2013, Novel strategies for the prevention and treatment of biofilm related infections, Int. J. Mol. Sci., 14, 18488, 10.3390/ijms140918488
Kaplan, 2009, Therapeutic potential of biofilm-dispersing enzymes, Int. J. Artif. Organs, 32, 545, 10.1177/039139880903200903
Agarwal, 2014, Removal of biofilms by intermittent low-intensity ultrasonication triggered bursting of microbubbles, Biofouling, 30, 359, 10.1080/08927014.2013.876624
Fais, 2017, The N-Terminus of human lactoferrin displays anti-biofilm activity on Candida parapsilosis in lumen catheters, Front. Microbiol., 8, 10.3389/fmicb.2017.02218
Fu, 2010, Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system, Antimicrob, Agents Chemother, 54, 397, 10.1128/AAC.00669-09
Azeredo, 2017, Critical review on biofilm methods, Crit. Rev. Microbiol., 43, 313, 10.1080/1040841X.2016.1208146
Monds, 2009, The developmental model of microbial biofilms: ten years of a paradigm up for review, Trends Microbiol., 17, 73, 10.1016/j.tim.2008.11.001
Dunne, 2002, Bacterial adhesion: seen any good biofilms lately?, Clin. Microbiol. Rev., 15, 155, 10.1128/CMR.15.2.155-166.2002
Berne, 2018, Bacterial adhesion at the single-cell level, Nat. Rev. Microbiol., 16, 616, 10.1038/s41579-018-0057-5
Tolker-Nielsen, 2015, Biofilm development, Microbiol. Spectr., 10.1128/microbiolspec.MB-0001-2014
Stewart, 2008, Physiological heterogeneity in biofilms, Nat. Rev. Microbiol., 6, 199, 10.1038/nrmicro1838
Kaplan, 2010, Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses, J. Dent. Res., 89, 205, 10.1177/0022034509359403
McDougald, 2012, Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal, Nat. Rev. Microbiol., 10, 39, 10.1038/nrmicro2695
Garrett, 2008, Bacterial adhesion and biofilms on surfaces, Prog. Nat. Sci., 18, 1049, 10.1016/j.pnsc.2008.04.001
López, 2010, Biolims, Cold Spring Harb Perspect Biol., 2, 1
Schuster, 2014, Biofilm architecture, 77
Branda, 2005, Biofilms: the matrix revisited, Trends Microbiol., 13, 20, 10.1016/j.tim.2004.11.006
Kumar, 2017, Biofilms: survival and defense strategy for pathogens, Int. J. Med. Microbiol., 307, 481, 10.1016/j.ijmm.2017.09.016
Zarnowski, 2014, Novel entries in a fungal biofilm matrix encyclopedia, mBio, 5, 1, 10.1128/mBio.01333-14
Hall-Stoodley, 2012, Towards diagnostic guidelines for biofilm-associated infections, FEMS Immunol. Med. Microbiol., 65, 127, 10.1111/j.1574-695X.2012.00968.x
Wi, 2018, Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections, Infect. Dis. Clin., 32, 915, 10.1016/j.idc.2018.06.009
Nivens, 2009, 21 - sampling and quantification of biofilms in food processing and other environments, 539
Lagier, 2015, Current and past strategies for bacterial culture in clinical microbiology, Clin. Microbiol. Rev., 28, 208, 10.1128/CMR.00110-14
Gominet, 2017, Central venous catheters and biofilms: where do we stand in 2017?, Apmis, 125, 365, 10.1111/apm.12665
Tande, 2014, Prosthetic joint infection, Clin. Microbiol. Rev., 27, 302, 10.1128/CMR.00111-13
Lewandowski, 2013, Imaging and characterizing biofilm components, 67
Wilson, 2017, Quantitative and qualitative assessment methods for biofilm growth: a mini-review, Res. Rev. J. Eng. Technol., 6
Franklin, 2015, New technologies for studying biofilms, Microbiol. Spectr., 3, 10.1128/microbiolspec.MB-0016-2014
Huang, 2020, Methods to probe the formation of biofilms: applications in foods and related surfaces, Anal. Methods., 12, 416, 10.1039/C9AY02214G
Hannig, 2010, Visualization of adherent micro-organisms using different techniques, J. Med. Microbiol., 59, 1, 10.1099/jmm.0.015420-0
Surman, 1996, Comparison of microscope techniques for the examination of biofilms, J. Microbiol. Methods, 25, 57, 10.1016/0167-7012(95)00085-2
James, 2017, Atomic force microscopy studies of bioprocess engineering surfaces – imaging, interactions and mechanical properties mediating bacterial adhesion, Biotechnol. J., 12, 10.1002/biot.201600698
James, 2016, Atomic force microscopy of biofilms—imaging, interactions, and mechanics
Xu, 2020, Sensing the unreachable: challenges and opportunities in biofilm detection, Curr. Opin. Biotechnol., 64, 79, 10.1016/j.copbio.2019.10.009
Nivens, 1995, Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques, J. Ind. Microbiol., 15, 263, 10.1007/BF01569979
Janknecht, 2003, Online biofilm monitoring, Rev. Environ. Sci. Biotechnol., 2, 269, 10.1023/B:RESB.0000040461.69339.04
Wang, 2006, Practical considerations, 115
Bard, 2001, Introduction and overview of electrode processes, 1
Bagotsky, 2005
Wang, 2006, Fundamental concepts, 1
Brosel-Oliu, 2019, Impedimetric transducers based on interdigitated electrode arrays for bacterial detection – a review, Anal. Chim. Acta, 1088, 1, 10.1016/j.aca.2019.09.026
Bressel, 2003, High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems, 3363
Herrera, 2019, A biosensor for the detection of acetylcholine and diazinon, 1159
Vivaldi, 2019, A graphene-based pH sensor on paper for human plasma and seawater, 1563
Poma, 2019, Remote monitoring of seawater temperature and pH by low cost sensors, Microchem. J., 148, 248, 10.1016/j.microc.2019.05.001
Bonini, 2020, A graphenic biosensor for real-time monitoring of urea during dialysis, IEEE Sensor. J., 10.1109/JSEN.2020.2966456
Poma, 2020, A graphenic and potentiometric sensor for monitoring the growth of bacterial biofilms, Sensor. Actuator. B Chem., 323, 10.1016/j.snb.2020.128662
Eggins, 2007
Bard, 2001, Potential sweep methods: voltammetry, 226
Vivaldi, 2020, A voltammetric pH sensor for food and biological matrices, Sensor. Actuator. B Chem., 322, 10.1016/j.snb.2020.128650
Scholz, 2015, Voltammetric techniques of analysis: the essentials, ChemTexts, 1, 10.1007/s40828-015-0016-y
Elgrishi, 2018, A practical beginner's guide to cyclic voltammetry, J. Chem. Educ., 95, 197, 10.1021/acs.jchemed.7b00361
Wang, 2006, Study of electrode reactions and interfacial properties, 29
Illsley, 1997, An electrochemical investigation of the fouling of a model surface by a coliform bacterium, Biofouling, 11, 191, 10.1080/08927019709378330
Kang, 2012, Cyclic voltammetry for monitoring bacterial attachment and biofilm formation, J. Ind. Eng. Chem., 18, 800, 10.1016/j.jiec.2011.10.002
Tian, 2007, Direct growth of biofilms on an electrode surface and its application in electrochemical biosensoring, J. Electroanal. Chem., 611, 133, 10.1016/j.jelechem.2007.08.009
Pinho, 1999, An electrochemical detector for biofilm monitoring
Vieira, 2003, The use of cyclic voltammetry to detect biofilms formed by Pseudomonas fluorescens on platinum electrodes, Biofouling, 19, 215, 10.1080/08927010310000100800
Gião, 2003, Monitoring biofilm formation by using cyclic voltammetry - effect of the experimental conditions on biofilm removal and activity, 51
Kurissery, 2010, Electrochemical and microbiological characterization of paper mill biofilms, Biofouling, 26, 799, 10.1080/08927014.2010.519025
Fysun, 2019, Electrochemical detection of food-spoiling bacteria using interdigitated platinum microelectrodes, J. Microbiol. Methods, 161, 63, 10.1016/j.mimet.2019.04.015
Fysun, 2019, Electrochemical detection of a P. polymyxa biofilm and CIP cleaning solutions by voltammetric microsensors, Eng. Agric, Environ. Food., 12, 232
Becerro, 2016, Electrochemical real-time analysis of bacterial biofilm adhesion and development by means of thin-film biosensors, IEEE Sensor. J., 16, 1856, 10.1109/JSEN.2015.2504495
Bard, 2001, Polarography and pulse voltammetry, 261
Bellin, 2014, Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms, Nat. Commun., 5, 3256, 10.1038/ncomms4256
Bellin, 2016, Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms, Nat. Commun., 7, 10.1038/ncomms10535
Robb, 2018, Electrochemical detection of small molecule induced Pseudomonas aeruginosa biofilm dispersion, Electrochim. Acta, 268, 276, 10.1016/j.electacta.2018.02.113
Silley, 1996, Impedance microbiology-a rapid change for microbiologists, J. Appl. Bacteriol., 80, 233, 10.1111/j.1365-2672.1996.tb03215.x
Lasia, 2014
Furst, 2019, Impedance-based detection of bacteria, Chem. Rev., 119, 700, 10.1021/acs.chemrev.8b00381
Bǎnicǎ, 2012
Muñoz-Berbel, 2007, Impedimetric characterization of the changes produced in the electrode-solution interface by bacterial attachment, Electrochem. Commun., 9, 2654, 10.1016/j.elecom.2007.08.011
Muñoz-Berbel, 2006, On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network, Sensor. Actuator. B Chem., 118, 129, 10.1016/j.snb.2006.04.070
Muñoz-Berbel, 2008, Impedimetric approach for monitoring the formation of biofilms on metallic surfaces and the subsequent application to the detection of bacteriophages, Electrochim. Acta, 53, 5739, 10.1016/j.electacta.2008.03.050
Kim, 2011, Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy, Water Res., 45, 4615, 10.1016/j.watres.2011.06.010
Dheilly, 2008, Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry, Appl. Microbiol. Biotechnol., 79, 157, 10.1007/s00253-008-1404-7
Goikoetxea, 2018, Impedimetric fingerprinting and structural analysis of isogenic E. coli biofilms using multielectrode arrays, Sensor. Actuator. B Chem., 263, 319, 10.1016/j.snb.2018.01.188
Kim, 2012, Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy, 126
Paredes, 2012, Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system, Biosens. Bioelectron., 38, 226, 10.1016/j.bios.2012.05.027
Paredes, 2013, Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates, Sensor. Actuator. B Chem., 178, 663, 10.1016/j.snb.2013.01.027
Paredes, 2014, Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes, J. Microbiol. Methods, 100, 77, 10.1016/j.mimet.2014.02.022
Paredes, 2014, Comparison of real time impedance monitoring of bacterial biofilm cultures in different experimental setups mimicking real field environments, Sensor. Actuator. B Chem., 195, 667, 10.1016/j.snb.2014.01.098
Tubia, 2018, Brettanomyces bruxellensis growth detection using interdigitated microelectrode based sensors by means of impedance analysis, Sensors Actuators, A Phys., 269, 175, 10.1016/j.sna.2017.11.009
Junka, 2012, Use of the real time xCelligence system for purposes of medical microbiology, Pol. J. Microbiol., 61, 191, 10.33073/pjm-2012-024
Gutiérrez, 2016, Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology, PloS One, 11, 10.1371/journal.pone.0163966
Van Duuren, 2017, Use of single-frequency impedance spectroscopy to characterize the growth dynamics of biofilm formation in Pseudomonas aeruginosa, Sci. Rep., 7, 1, 10.1038/s41598-017-05273-5
Abrantes, 2020, Measuring Streptococcus mutans, Streptococcus sanguinis and Candida albicans biofilm formation using a real-time impedance-based system, J. Microbiol. Methods, 169, 10.1016/j.mimet.2019.105815
Mira, 2019, Development of an in vitro system to study oral biofilms in real time through impedance technology: validation and potential applications, J. Oral Microbiol., 11
Cihalova, 2015, Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs, Int. J. Mol. Sci., 16, 24656, 10.3390/ijms161024656
Bayoudh, 2008, Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber, Colloids Surfaces A Physicochem. Eng. Asp., 318, 291, 10.1016/j.colsurfa.2008.01.005
Zheng, 2013, Electrochemical measurements of biofilm development using polypyrrole enhanced flexible sensors, Sensor. Actuator. B Chem., 182, 725, 10.1016/j.snb.2013.03.097
Pires, 2013, Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor, Biosens. Bioelectron., 47, 157, 10.1016/j.bios.2013.03.015
Bruchmann, 2015, Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity, PloS One, 10, 10.1371/journal.pone.0117300
Estrada-Leypon, 2015, Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy, Bioelectrochemistry, 105, 56, 10.1016/j.bioelechem.2015.05.006
Subramanian, 2017, An integrated microsystem for real-time detection and threshold-activated treatment of bacterial biofilms, ACS Appl. Mater. Interfaces, 9, 31362, 10.1021/acsami.7b04828
Liu, 2018, Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip, Biosens. Bioelectron., 112, 86, 10.1016/j.bios.2018.04.019
Paredes, 2014, Smart central venous port for early detection of bacterial biofilm related infections, Biomed. Microdevices, 16, 365
Huiszoon, 2019, Flexible platform for in situ impedimetric detection and bioelectric effect treatment of Escherichia coli biofilms, IEEE Trans. Biomed. Eng., 66, 1337, 10.1109/TBME.2018.2872896
Turolla, 2019, Development of a miniaturized and selective impedance sensor for real-time slime monitoring in pipes and tanks, Sensor. Actuator. B Chem., 281, 288, 10.1016/j.snb.2018.10.107
Carminati, 2019, Flexible impedance sensor for in-line monitoring of water and beverages
Bonetto, 2014, Rapid and label-free differentiation of bacterial strains using low frequency electrochemical impedance spectroscopy
Ward, 2014, Pseudomonas aeruginosacan be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor, PloS One, 9, 10.1371/journal.pone.0091732
Tubía, 2018, Antibody biosensors for spoilage yeast detection based on impedance spectroscopy, Biosens. Bioelectron., 102, 432, 10.1016/j.bios.2017.11.057
Ben-Yoav, 2011, An electrochemical impedance model for integrated bacterial biofilms, 7780