Microbial biofilm monitoring by electrochemical transduction methods

TrAC Trends in Analytical Chemistry - Tập 134 - Trang 116134 - 2021
Noemi Poma1, Federico Vivaldi1,2, Andrea Bonini1, Pietro Salvo2, Arno Kirchhain1, Zeliha Ates1, Bernardo Melai1, Daria Bottai3, Arianna Tavanti3, Fabio Di Francesco1
1Department of Chemistry and Industrial Chemistry, University of Pisa, Italy
2Institute of Clinical Physiology, National Research Council, Italy
3Department of Biology, University of Pisa, Italy

Tài liệu tham khảo

Donlan, 2002, Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15, 167, 10.1128/CMR.15.2.167-193.2002 Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821 Singh, 2006, Biofilms: implications in bioremediation, Trends Microbiol., 14, 389, 10.1016/j.tim.2006.07.001 Logan, 2009, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol., 7, 375, 10.1038/nrmicro2113 Mattila-Sandholm, 1992, biofilm formation in the industry: a review, Food Rev. Int., 8, 573, 10.1080/87559129209540953 Macià, 2018, Microbiological diagnosis of biofilm-related infections, Enferm. Infecc. Microbiol. Clín., 36, 375, 10.1016/j.eimc.2017.04.006 Telegdi, 2017, Microbiologically influenced corrosion (MIC), in: trends oil gas corros, Res. Technol. Prod. Transm., 191 Khatoon, 2018, Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention, Heliyon, 4, 10.1016/j.heliyon.2018.e01067 Joo, 2012, Molecular basis of in vivo biofilm formation by bacterial pathogens, Chem. Biol., 19, 1503, 10.1016/j.chembiol.2012.10.022 Darouiche, 2001, Device-associated infections: a macroproblem that starts with microadherence, Clin. Infect. Dis., 33, 1567, 10.1086/323130 Metcalf, 2013, Biofilm delays wound healing: a review of the evidence, Burn. Trauma., 1, 5, 10.4103/2321-3868.113329 Kirchhain, 2019, Biosensors for measuring matrix metalloproteinases: an emerging research field, TrAC Trends Anal. Chem. (Reference Ed.), 110, 35, 10.1016/j.trac.2018.10.027 Percival, 2015, Healthcare-Associated infections, medical devices and biofilms: risk, tolerance and control, J. Med. Microbiol., 64, 323, 10.1099/jmm.0.000032 Flemming, 2016, Biofilms: an emergent form of bacterial life, Nat. Rev. Microbiol., 14, 563, 10.1038/nrmicro.2016.94 Ruckenstein, 2005, Surface modification and functionalization through the self-assembled monolayer and graft polymerization, Adv. Colloid Interface Sci., 113, 43, 10.1016/j.cis.2004.07.009 Samanta, 2018, Early pH change predicts intensive care unit mortality, Indian J. Crit. Care Med., 22, 697, 10.4103/ijccm.IJCCM_129_18 Desrousseaux, 2013, Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation, J. Hosp. Infect., 85, 87, 10.1016/j.jhin.2013.06.015 Chen, 2013, Novel strategies for the prevention and treatment of biofilm related infections, Int. J. Mol. Sci., 14, 18488, 10.3390/ijms140918488 Kaplan, 2009, Therapeutic potential of biofilm-dispersing enzymes, Int. J. Artif. Organs, 32, 545, 10.1177/039139880903200903 Agarwal, 2014, Removal of biofilms by intermittent low-intensity ultrasonication triggered bursting of microbubbles, Biofouling, 30, 359, 10.1080/08927014.2013.876624 Fais, 2017, The N-Terminus of human lactoferrin displays anti-biofilm activity on Candida parapsilosis in lumen catheters, Front. Microbiol., 8, 10.3389/fmicb.2017.02218 Fu, 2010, Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system, Antimicrob, Agents Chemother, 54, 397, 10.1128/AAC.00669-09 Azeredo, 2017, Critical review on biofilm methods, Crit. Rev. Microbiol., 43, 313, 10.1080/1040841X.2016.1208146 Monds, 2009, The developmental model of microbial biofilms: ten years of a paradigm up for review, Trends Microbiol., 17, 73, 10.1016/j.tim.2008.11.001 Dunne, 2002, Bacterial adhesion: seen any good biofilms lately?, Clin. Microbiol. Rev., 15, 155, 10.1128/CMR.15.2.155-166.2002 Berne, 2018, Bacterial adhesion at the single-cell level, Nat. Rev. Microbiol., 16, 616, 10.1038/s41579-018-0057-5 Tolker-Nielsen, 2015, Biofilm development, Microbiol. Spectr., 10.1128/microbiolspec.MB-0001-2014 Stewart, 2008, Physiological heterogeneity in biofilms, Nat. Rev. Microbiol., 6, 199, 10.1038/nrmicro1838 Kaplan, 2010, Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses, J. Dent. Res., 89, 205, 10.1177/0022034509359403 McDougald, 2012, Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal, Nat. Rev. Microbiol., 10, 39, 10.1038/nrmicro2695 Garrett, 2008, Bacterial adhesion and biofilms on surfaces, Prog. Nat. Sci., 18, 1049, 10.1016/j.pnsc.2008.04.001 López, 2010, Biolims, Cold Spring Harb Perspect Biol., 2, 1 Schuster, 2014, Biofilm architecture, 77 Branda, 2005, Biofilms: the matrix revisited, Trends Microbiol., 13, 20, 10.1016/j.tim.2004.11.006 Kumar, 2017, Biofilms: survival and defense strategy for pathogens, Int. J. Med. Microbiol., 307, 481, 10.1016/j.ijmm.2017.09.016 Zarnowski, 2014, Novel entries in a fungal biofilm matrix encyclopedia, mBio, 5, 1, 10.1128/mBio.01333-14 Hall-Stoodley, 2012, Towards diagnostic guidelines for biofilm-associated infections, FEMS Immunol. Med. Microbiol., 65, 127, 10.1111/j.1574-695X.2012.00968.x Wi, 2018, Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections, Infect. Dis. Clin., 32, 915, 10.1016/j.idc.2018.06.009 Nivens, 2009, 21 - sampling and quantification of biofilms in food processing and other environments, 539 Lagier, 2015, Current and past strategies for bacterial culture in clinical microbiology, Clin. Microbiol. Rev., 28, 208, 10.1128/CMR.00110-14 Gominet, 2017, Central venous catheters and biofilms: where do we stand in 2017?, Apmis, 125, 365, 10.1111/apm.12665 Tande, 2014, Prosthetic joint infection, Clin. Microbiol. Rev., 27, 302, 10.1128/CMR.00111-13 Lewandowski, 2013, Imaging and characterizing biofilm components, 67 Wilson, 2017, Quantitative and qualitative assessment methods for biofilm growth: a mini-review, Res. Rev. J. Eng. Technol., 6 Franklin, 2015, New technologies for studying biofilms, Microbiol. Spectr., 3, 10.1128/microbiolspec.MB-0016-2014 Huang, 2020, Methods to probe the formation of biofilms: applications in foods and related surfaces, Anal. Methods., 12, 416, 10.1039/C9AY02214G Hannig, 2010, Visualization of adherent micro-organisms using different techniques, J. Med. Microbiol., 59, 1, 10.1099/jmm.0.015420-0 Surman, 1996, Comparison of microscope techniques for the examination of biofilms, J. Microbiol. Methods, 25, 57, 10.1016/0167-7012(95)00085-2 James, 2017, Atomic force microscopy studies of bioprocess engineering surfaces – imaging, interactions and mechanical properties mediating bacterial adhesion, Biotechnol. J., 12, 10.1002/biot.201600698 James, 2016, Atomic force microscopy of biofilms—imaging, interactions, and mechanics Xu, 2020, Sensing the unreachable: challenges and opportunities in biofilm detection, Curr. Opin. Biotechnol., 64, 79, 10.1016/j.copbio.2019.10.009 Nivens, 1995, Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques, J. Ind. Microbiol., 15, 263, 10.1007/BF01569979 Janknecht, 2003, Online biofilm monitoring, Rev. Environ. Sci. Biotechnol., 2, 269, 10.1023/B:RESB.0000040461.69339.04 Wang, 2006, Practical considerations, 115 Bard, 2001, Introduction and overview of electrode processes, 1 Bagotsky, 2005 Wang, 2006, Fundamental concepts, 1 Brosel-Oliu, 2019, Impedimetric transducers based on interdigitated electrode arrays for bacterial detection – a review, Anal. Chim. Acta, 1088, 1, 10.1016/j.aca.2019.09.026 Bressel, 2003, High resolution gravimetric, optical and electrochemical investigations of microbial biofilm formation in aqueous systems, 3363 Herrera, 2019, A biosensor for the detection of acetylcholine and diazinon, 1159 Vivaldi, 2019, A graphene-based pH sensor on paper for human plasma and seawater, 1563 Poma, 2019, Remote monitoring of seawater temperature and pH by low cost sensors, Microchem. J., 148, 248, 10.1016/j.microc.2019.05.001 Bonini, 2020, A graphenic biosensor for real-time monitoring of urea during dialysis, IEEE Sensor. J., 10.1109/JSEN.2020.2966456 Poma, 2020, A graphenic and potentiometric sensor for monitoring the growth of bacterial biofilms, Sensor. Actuator. B Chem., 323, 10.1016/j.snb.2020.128662 Eggins, 2007 Bard, 2001, Potential sweep methods: voltammetry, 226 Vivaldi, 2020, A voltammetric pH sensor for food and biological matrices, Sensor. Actuator. B Chem., 322, 10.1016/j.snb.2020.128650 Scholz, 2015, Voltammetric techniques of analysis: the essentials, ChemTexts, 1, 10.1007/s40828-015-0016-y Elgrishi, 2018, A practical beginner's guide to cyclic voltammetry, J. Chem. Educ., 95, 197, 10.1021/acs.jchemed.7b00361 Wang, 2006, Study of electrode reactions and interfacial properties, 29 Illsley, 1997, An electrochemical investigation of the fouling of a model surface by a coliform bacterium, Biofouling, 11, 191, 10.1080/08927019709378330 Kang, 2012, Cyclic voltammetry for monitoring bacterial attachment and biofilm formation, J. Ind. Eng. Chem., 18, 800, 10.1016/j.jiec.2011.10.002 Tian, 2007, Direct growth of biofilms on an electrode surface and its application in electrochemical biosensoring, J. Electroanal. Chem., 611, 133, 10.1016/j.jelechem.2007.08.009 Pinho, 1999, An electrochemical detector for biofilm monitoring Vieira, 2003, The use of cyclic voltammetry to detect biofilms formed by Pseudomonas fluorescens on platinum electrodes, Biofouling, 19, 215, 10.1080/08927010310000100800 Gião, 2003, Monitoring biofilm formation by using cyclic voltammetry - effect of the experimental conditions on biofilm removal and activity, 51 Kurissery, 2010, Electrochemical and microbiological characterization of paper mill biofilms, Biofouling, 26, 799, 10.1080/08927014.2010.519025 Fysun, 2019, Electrochemical detection of food-spoiling bacteria using interdigitated platinum microelectrodes, J. Microbiol. Methods, 161, 63, 10.1016/j.mimet.2019.04.015 Fysun, 2019, Electrochemical detection of a P. polymyxa biofilm and CIP cleaning solutions by voltammetric microsensors, Eng. Agric, Environ. Food., 12, 232 Becerro, 2016, Electrochemical real-time analysis of bacterial biofilm adhesion and development by means of thin-film biosensors, IEEE Sensor. J., 16, 1856, 10.1109/JSEN.2015.2504495 Bard, 2001, Polarography and pulse voltammetry, 261 Bellin, 2014, Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms, Nat. Commun., 5, 3256, 10.1038/ncomms4256 Bellin, 2016, Electrochemical camera chip for simultaneous imaging of multiple metabolites in biofilms, Nat. Commun., 7, 10.1038/ncomms10535 Robb, 2018, Electrochemical detection of small molecule induced Pseudomonas aeruginosa biofilm dispersion, Electrochim. Acta, 268, 276, 10.1016/j.electacta.2018.02.113 Silley, 1996, Impedance microbiology-a rapid change for microbiologists, J. Appl. Bacteriol., 80, 233, 10.1111/j.1365-2672.1996.tb03215.x Lasia, 2014 Furst, 2019, Impedance-based detection of bacteria, Chem. Rev., 119, 700, 10.1021/acs.chemrev.8b00381 Bǎnicǎ, 2012 Muñoz-Berbel, 2007, Impedimetric characterization of the changes produced in the electrode-solution interface by bacterial attachment, Electrochem. Commun., 9, 2654, 10.1016/j.elecom.2007.08.011 Muñoz-Berbel, 2006, On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network, Sensor. Actuator. B Chem., 118, 129, 10.1016/j.snb.2006.04.070 Muñoz-Berbel, 2008, Impedimetric approach for monitoring the formation of biofilms on metallic surfaces and the subsequent application to the detection of bacteriophages, Electrochim. Acta, 53, 5739, 10.1016/j.electacta.2008.03.050 Kim, 2011, Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy, Water Res., 45, 4615, 10.1016/j.watres.2011.06.010 Dheilly, 2008, Monitoring of microbial adhesion and biofilm growth using electrochemical impedancemetry, Appl. Microbiol. Biotechnol., 79, 157, 10.1007/s00253-008-1404-7 Goikoetxea, 2018, Impedimetric fingerprinting and structural analysis of isogenic E. coli biofilms using multielectrode arrays, Sensor. Actuator. B Chem., 263, 319, 10.1016/j.snb.2018.01.188 Kim, 2012, Rapid bacterial detection with an interdigitated array electrode by electrochemical impedance spectroscopy, 126 Paredes, 2012, Real time monitoring of the impedance characteristics of Staphylococcal bacterial biofilm cultures with a modified CDC reactor system, Biosens. Bioelectron., 38, 226, 10.1016/j.bios.2012.05.027 Paredes, 2013, Interdigitated microelectrode biosensor for bacterial biofilm growth monitoring by impedance spectroscopy technique in 96-well microtiter plates, Sensor. Actuator. B Chem., 178, 663, 10.1016/j.snb.2013.01.027 Paredes, 2014, Label-free interdigitated microelectrode based biosensors for bacterial biofilm growth monitoring using Petri dishes, J. Microbiol. Methods, 100, 77, 10.1016/j.mimet.2014.02.022 Paredes, 2014, Comparison of real time impedance monitoring of bacterial biofilm cultures in different experimental setups mimicking real field environments, Sensor. Actuator. B Chem., 195, 667, 10.1016/j.snb.2014.01.098 Tubia, 2018, Brettanomyces bruxellensis growth detection using interdigitated microelectrode based sensors by means of impedance analysis, Sensors Actuators, A Phys., 269, 175, 10.1016/j.sna.2017.11.009 Junka, 2012, Use of the real time xCelligence system for purposes of medical microbiology, Pol. J. Microbiol., 61, 191, 10.33073/pjm-2012-024 Gutiérrez, 2016, Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology, PloS One, 11, 10.1371/journal.pone.0163966 Van Duuren, 2017, Use of single-frequency impedance spectroscopy to characterize the growth dynamics of biofilm formation in Pseudomonas aeruginosa, Sci. Rep., 7, 1, 10.1038/s41598-017-05273-5 Abrantes, 2020, Measuring Streptococcus mutans, Streptococcus sanguinis and Candida albicans biofilm formation using a real-time impedance-based system, J. Microbiol. Methods, 169, 10.1016/j.mimet.2019.105815 Mira, 2019, Development of an in vitro system to study oral biofilms in real time through impedance technology: validation and potential applications, J. Oral Microbiol., 11 Cihalova, 2015, Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs, Int. J. Mol. Sci., 16, 24656, 10.3390/ijms161024656 Bayoudh, 2008, Electrical detection and characterization of bacterial adhesion using electrochemical impedance spectroscopy-based flow chamber, Colloids Surfaces A Physicochem. Eng. Asp., 318, 291, 10.1016/j.colsurfa.2008.01.005 Zheng, 2013, Electrochemical measurements of biofilm development using polypyrrole enhanced flexible sensors, Sensor. Actuator. B Chem., 182, 725, 10.1016/j.snb.2013.03.097 Pires, 2013, Online monitoring of biofilm growth and activity using a combined multi-channel impedimetric and amperometric sensor, Biosens. Bioelectron., 47, 157, 10.1016/j.bios.2013.03.015 Bruchmann, 2015, Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity, PloS One, 10, 10.1371/journal.pone.0117300 Estrada-Leypon, 2015, Simultaneous monitoring of Staphylococcus aureus growth in a multi-parametric microfluidic platform using microscopy and impedance spectroscopy, Bioelectrochemistry, 105, 56, 10.1016/j.bioelechem.2015.05.006 Subramanian, 2017, An integrated microsystem for real-time detection and threshold-activated treatment of bacterial biofilms, ACS Appl. Mater. Interfaces, 9, 31362, 10.1021/acsami.7b04828 Liu, 2018, Monitoring of bacteria biofilms forming process by in-situ impedimetric biosensor chip, Biosens. Bioelectron., 112, 86, 10.1016/j.bios.2018.04.019 Paredes, 2014, Smart central venous port for early detection of bacterial biofilm related infections, Biomed. Microdevices, 16, 365 Huiszoon, 2019, Flexible platform for in situ impedimetric detection and bioelectric effect treatment of Escherichia coli biofilms, IEEE Trans. Biomed. Eng., 66, 1337, 10.1109/TBME.2018.2872896 Turolla, 2019, Development of a miniaturized and selective impedance sensor for real-time slime monitoring in pipes and tanks, Sensor. Actuator. B Chem., 281, 288, 10.1016/j.snb.2018.10.107 Carminati, 2019, Flexible impedance sensor for in-line monitoring of water and beverages Bonetto, 2014, Rapid and label-free differentiation of bacterial strains using low frequency electrochemical impedance spectroscopy Ward, 2014, Pseudomonas aeruginosacan be detected in a polymicrobial competition model using impedance spectroscopy with a novel biosensor, PloS One, 9, 10.1371/journal.pone.0091732 Tubía, 2018, Antibody biosensors for spoilage yeast detection based on impedance spectroscopy, Biosens. Bioelectron., 102, 432, 10.1016/j.bios.2017.11.057 Ben-Yoav, 2011, An electrochemical impedance model for integrated bacterial biofilms, 7780