Selective adsorption of nitrate over chloride in microporous carbons
Tài liệu tham khảo
Arulrajan, 2019, Exceptional water desalination performance with anion-selective electrodes, Adv. Mater., 31, 10.1002/adma.201806937
Avraham, 2008, Developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ separation in water capacitive desalination, J. Phys. Chem. C, 112, 7385, 10.1021/jp711706z
Biesheuvel, 2015
Biesheuvel, 2015, Theory of water desalination by porous electrodes with immobile chemical charge, Colloid. Interface Sci. Commun., 9, 1, 10.1016/j.colcom.2015.12.001
Biesheuvel, 2014, Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem., 18, 1365, 10.1007/s10008-014-2383-5
Boehm, 1994, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32, 759, 10.1016/0008-6223(94)90031-0
Chen, 2004, Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties, Langmuir, 20, 2233, 10.1021/la0348463
Chen, 2015, A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization, Desalination, 369, 46, 10.1016/j.desal.2015.04.022
Collins, 1995, Sticky ions in biological systems, Proc. Natl. Acad. Sci. U.S.A., 92, 5553, 10.1073/pnas.92.12.5553
Dykstra, 2016, On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization, Desalination, 390, 47, 10.1016/j.desal.2016.04.001
Dykstra, 2016, Resistance identification and rational process design in capacitive deionization, Water Res., 88, 358, 10.1016/j.watres.2015.10.006
Eliad, 2001, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions, J. Phys. Chem. B, 105, 6880, 10.1021/jp010086y
Epsztein, 2018, Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration, Environ. Sci. Technol., 52, 4108, 10.1021/acs.est.7b06400
Gabelich, 2002, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36, 3010, 10.1021/es0112745
Gao, 2016, Complementary surface charge for enhanced capacitive deionization, Water Res., 92, 275, 10.1016/j.watres.2016.01.048
Guyes, 2019, Enhancing the ion size-based selectivity of capacitive deionization electrodes, Environ. Sci. Technol., 53, 8447, 10.1021/acs.est.8b06954
Han, 2014, Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization, J. Colloid Interface Sci., 430, 93, 10.1016/j.jcis.2014.05.015
Hassanvand, 2018, A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization, Water Res., 131, 100, 10.1016/j.watres.2017.12.015
Hatzell, 2014, Effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion, Environ. Sci. Technol., 48, 14041, 10.1021/es5043782
Hawks, 2019, Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization, Environ. Sci. Technol., 10.1021/acs.est.9b01374
Haynes, 2012
Hemmatifar, 2017, Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes, Water Res., 122, 387, 10.1016/j.watres.2017.05.036
Hiemstra, 1989, Multisite proton adsorption modeling at the solid/solution interface of (Hydr)oxides: a new approach, J. Colloid Interface Sci., 133, 91, 10.1016/0021-9797(89)90284-1
Hiemstra, 1999, Interfacial charging phenomena of aluminum (Hydr)oxides, Langmuir, 15, 5942, 10.1021/la981301d
Hou, 2013, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314, 124, 10.1016/j.desal.2012.12.029
Hu, 2018, Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode, Chem. Eng. J., 335, 475, 10.1016/j.cej.2017.10.167
Johnson, 1971, Desalting by means of porous carbon electrodes, J. Electrochem. Soc., 118, 510, 10.1149/1.2408094
Kalluri, 2013, Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes, Phys. Chem. Chem. Phys., 15, 2309, 10.1039/c2cp43361c
Kim, 2019, Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders, Water Res., 148, 388, 10.1016/j.watres.2018.10.044
Kim, 2012, Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization, Water Res., 46, 6033, 10.1016/j.watres.2012.08.031
Li, 2002, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, 40, 2085, 10.1016/S0008-6223(02)00069-6
Li, 2016, Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization, Desalination, 399, 171, 10.1016/j.desal.2016.09.011
Marcus, 2012, 1
Mossad, 2012, A study of the capacitive deionisation performance under various operational conditions, J. Hazard Mater., 213–214, 491, 10.1016/j.jhazmat.2012.02.036
Mubita, 2018, Capacitive deionization with wire-shaped electrodes, Electrochim. Acta, 270, 165, 10.1016/j.electacta.2018.03.082
Nightingale, 1959, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63, 1381, 10.1021/j150579a011
Noked, 2009, Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition, J. Phys. Chem. C, 113, 7316, 10.1021/jp811283b
Ota, 2013, Removal of nitrate ions from water by activated carbons (ACs)—influence of surface chemistry of ACs and coexisting chloride and sulfate ions, Appl. Surf. Sci., 276, 838, 10.1016/j.apsusc.2013.03.053
Oyarzun, 2018, Ion selectivity in capacitive deionization with functionalized electrode: theory and experimental validation, Water Res. X, 1, 100008, 10.1016/j.wroa.2018.100008
Porada, 2013, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy Environ. Sci., 6, 3700, 10.1039/c3ee42209g
Porada, 2012, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Appl. Mater. Interfaces, 4, 1194, 10.1021/am201683j
Reale, 2018, Capacitive performance and tortuosity of activated carbon electrodes with macroscopic pores, J. Electrochem. Soc., 165, A1685, 10.1149/2.0601809jes
Seredych, 2008, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475, 10.1016/j.carbon.2008.06.027
Shafeeyan, 2010, A review on surface modification of activated carbon for carbon dioxide adsorption, J. Anal. Appl. Pyrolysis, 89, 143, 10.1016/j.jaap.2010.07.006
Singh, 2018, Theory of water desalination with intercalation materials, Phys. Rev. Appl., 9, 10.1103/PhysRevApplied.9.064036
Singh, 2019, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115, 10.1016/j.desal.2018.12.015
Smith, 1977, Ionic hydration enthalpies, J. Chem. Educ., 54, 540, 10.1021/ed054p540
Song, 2019, Implication of non-electrostatic contribution to deionization in flow-electrode CDI: case study of nitrate removal from contaminated source waters, Front. Chem., 7, 10.3389/fchem.2019.00146
Sun, 2018, Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization, Chemosphere, 195, 282, 10.1016/j.chemosphere.2017.12.031
Sun, 2017, Chemical bond between chloride ions and surface carboxyl groups on activated carbon, Colloid. Surf. Physicochem. Eng. Asp., 530, 53, 10.1016/j.colsurfa.2017.06.077
Suss, 2017, Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes, J. Electrochem. Soc., 164, E270, 10.1149/2.1201709jes
Tang, 2017, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., 121, 302, 10.1016/j.watres.2017.05.046
Tang, 2015, Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization, Water Res., 84, 342, 10.1016/j.watres.2015.08.012
Tang, 2019, Various cell architectures of capacitive deionization: recent advances and future trends, Water Res., 150, 225, 10.1016/j.watres.2018.11.064
Tansel, 2012, Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects, Separ. Purif. Technol., 86, 119, 10.1016/j.seppur.2011.10.033
Wang, 2018, Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model, J. Colloid Interface Sci., 512, 522, 10.1016/j.jcis.2017.10.060
Zhao, 2010, Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization, J. Phys. Chem. Lett., 1, 205, 10.1021/jz900154h
Zhao, 2012, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5, 9520, 10.1039/c2ee21737f
Zhao, 2012, Time-dependent ion selectivity in capacitive charging of porous electrodes, J. Colloid Interface Sci., 384, 38, 10.1016/j.jcis.2012.06.022