Selective adsorption of nitrate over chloride in microporous carbons

Water Research - Tập 164 - Trang 114885 - 2019
T.M. Mubita1,2, J.E. Dykstra1, P.M. Biesheuvel2, A. van der Wal1,3, S. Porada2,4
1Department of Environmental Technology, Wageningen University, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
2Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
3Evides Water Company, Schaardijk 150, 3063 NH Rotterdam, the Netherlands
4Soft Matter, Fluidics and Interfaces Group, Faculty of Science and Technology, University of Twente, Meander ME 314, 7500 AE Enschede, the Netherlands

Tài liệu tham khảo

Arulrajan, 2019, Exceptional water desalination performance with anion-selective electrodes, Adv. Mater., 31, 10.1002/adma.201806937 Avraham, 2008, Developing ion electroadsorption stereoselectivity, by pore size adjustment with chemical vapor deposition onto active carbon fiber electrodes. Case of Ca2+/Na+ separation in water capacitive desalination, J. Phys. Chem. C, 112, 7385, 10.1021/jp711706z Biesheuvel, 2015 Biesheuvel, 2015, Theory of water desalination by porous electrodes with immobile chemical charge, Colloid. Interface Sci. Commun., 9, 1, 10.1016/j.colcom.2015.12.001 Biesheuvel, 2014, Attractive forces in microporous carbon electrodes for capacitive deionization, J. Solid State Electrochem., 18, 1365, 10.1007/s10008-014-2383-5 Boehm, 1994, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, 32, 759, 10.1016/0008-6223(94)90031-0 Chen, 2004, Acid/base-treated activated carbons: characterization of functional groups and metal adsorptive properties, Langmuir, 20, 2233, 10.1021/la0348463 Chen, 2015, A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization, Desalination, 369, 46, 10.1016/j.desal.2015.04.022 Collins, 1995, Sticky ions in biological systems, Proc. Natl. Acad. Sci. U.S.A., 92, 5553, 10.1073/pnas.92.12.5553 Dykstra, 2016, On-line method to study dynamics of ion adsorption from mixtures of salts in capacitive deionization, Desalination, 390, 47, 10.1016/j.desal.2016.04.001 Dykstra, 2016, Resistance identification and rational process design in capacitive deionization, Water Res., 88, 358, 10.1016/j.watres.2015.10.006 Eliad, 2001, Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions, J. Phys. Chem. B, 105, 6880, 10.1021/jp010086y Epsztein, 2018, Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration, Environ. Sci. Technol., 52, 4108, 10.1021/acs.est.7b06400 Gabelich, 2002, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36, 3010, 10.1021/es0112745 Gao, 2016, Complementary surface charge for enhanced capacitive deionization, Water Res., 92, 275, 10.1016/j.watres.2016.01.048 Guyes, 2019, Enhancing the ion size-based selectivity of capacitive deionization electrodes, Environ. Sci. Technol., 53, 8447, 10.1021/acs.est.8b06954 Han, 2014, Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization, J. Colloid Interface Sci., 430, 93, 10.1016/j.jcis.2014.05.015 Hassanvand, 2018, A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization, Water Res., 131, 100, 10.1016/j.watres.2017.12.015 Hatzell, 2014, Effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion, Environ. Sci. Technol., 48, 14041, 10.1021/es5043782 Hawks, 2019, Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization, Environ. Sci. Technol., 10.1021/acs.est.9b01374 Haynes, 2012 Hemmatifar, 2017, Equilibria model for pH variations and ion adsorption in capacitive deionization electrodes, Water Res., 122, 387, 10.1016/j.watres.2017.05.036 Hiemstra, 1989, Multisite proton adsorption modeling at the solid/solution interface of (Hydr)oxides: a new approach, J. Colloid Interface Sci., 133, 91, 10.1016/0021-9797(89)90284-1 Hiemstra, 1999, Interfacial charging phenomena of aluminum (Hydr)oxides, Langmuir, 15, 5942, 10.1021/la981301d Hou, 2013, A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization, Desalination, 314, 124, 10.1016/j.desal.2012.12.029 Hu, 2018, Nitrate electro-sorption/reduction in capacitive deionization using a novel Pd/NiAl-layered metal oxide film electrode, Chem. Eng. J., 335, 475, 10.1016/j.cej.2017.10.167 Johnson, 1971, Desalting by means of porous carbon electrodes, J. Electrochem. Soc., 118, 510, 10.1149/1.2408094 Kalluri, 2013, Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes, Phys. Chem. Chem. Phys., 15, 2309, 10.1039/c2cp43361c Kim, 2019, Enhancing capacitive deionization performance with charged structural polysaccharide electrode binders, Water Res., 148, 388, 10.1016/j.watres.2018.10.044 Kim, 2012, Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization, Water Res., 46, 6033, 10.1016/j.watres.2012.08.031 Li, 2002, Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution, Carbon, 40, 2085, 10.1016/S0008-6223(02)00069-6 Li, 2016, Effects of the hydration ratio on the electrosorption selectivity of ions during capacitive deionization, Desalination, 399, 171, 10.1016/j.desal.2016.09.011 Marcus, 2012, 1 Mossad, 2012, A study of the capacitive deionisation performance under various operational conditions, J. Hazard Mater., 213–214, 491, 10.1016/j.jhazmat.2012.02.036 Mubita, 2018, Capacitive deionization with wire-shaped electrodes, Electrochim. Acta, 270, 165, 10.1016/j.electacta.2018.03.082 Nightingale, 1959, Phenomenological theory of ion solvation. Effective radii of hydrated ions, J. Phys. Chem., 63, 1381, 10.1021/j150579a011 Noked, 2009, Development of anion stereoselective, activated carbon molecular sieve electrodes prepared by chemical vapor deposition, J. Phys. Chem. C, 113, 7316, 10.1021/jp811283b Ota, 2013, Removal of nitrate ions from water by activated carbons (ACs)—influence of surface chemistry of ACs and coexisting chloride and sulfate ions, Appl. Surf. Sci., 276, 838, 10.1016/j.apsusc.2013.03.053 Oyarzun, 2018, Ion selectivity in capacitive deionization with functionalized electrode: theory and experimental validation, Water Res. X, 1, 100008, 10.1016/j.wroa.2018.100008 Porada, 2013, Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization, Energy Environ. Sci., 6, 3700, 10.1039/c3ee42209g Porada, 2012, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Appl. Mater. Interfaces, 4, 1194, 10.1021/am201683j Reale, 2018, Capacitive performance and tortuosity of activated carbon electrodes with macroscopic pores, J. Electrochem. Soc., 165, A1685, 10.1149/2.0601809jes Seredych, 2008, Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance, Carbon, 46, 1475, 10.1016/j.carbon.2008.06.027 Shafeeyan, 2010, A review on surface modification of activated carbon for carbon dioxide adsorption, J. Anal. Appl. Pyrolysis, 89, 143, 10.1016/j.jaap.2010.07.006 Singh, 2018, Theory of water desalination with intercalation materials, Phys. Rev. Appl., 9, 10.1103/PhysRevApplied.9.064036 Singh, 2019, Timeline on the application of intercalation materials in capacitive deionization, Desalination, 455, 115, 10.1016/j.desal.2018.12.015 Smith, 1977, Ionic hydration enthalpies, J. Chem. Educ., 54, 540, 10.1021/ed054p540 Song, 2019, Implication of non-electrostatic contribution to deionization in flow-electrode CDI: case study of nitrate removal from contaminated source waters, Front. Chem., 7, 10.3389/fchem.2019.00146 Sun, 2018, Effect of the electronegativity on the electrosorption selectivity of anions during capacitive deionization, Chemosphere, 195, 282, 10.1016/j.chemosphere.2017.12.031 Sun, 2017, Chemical bond between chloride ions and surface carboxyl groups on activated carbon, Colloid. Surf. Physicochem. Eng. Asp., 530, 53, 10.1016/j.colsurfa.2017.06.077 Suss, 2017, Size-based ion selectivity of micropore electric double layers in capacitive deionization electrodes, J. Electrochem. Soc., 164, E270, 10.1149/2.1201709jes Tang, 2017, Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI), Water Res., 121, 302, 10.1016/j.watres.2017.05.046 Tang, 2015, Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization, Water Res., 84, 342, 10.1016/j.watres.2015.08.012 Tang, 2019, Various cell architectures of capacitive deionization: recent advances and future trends, Water Res., 150, 225, 10.1016/j.watres.2018.11.064 Tansel, 2012, Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: hydrated radius, hydration free energy and viscous effects, Separ. Purif. Technol., 86, 119, 10.1016/j.seppur.2011.10.033 Wang, 2018, Reversible thermodynamic cycle analysis for capacitive deionization with modified Donnan model, J. Colloid Interface Sci., 512, 522, 10.1016/j.jcis.2017.10.060 Zhao, 2010, Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization, J. Phys. Chem. Lett., 1, 205, 10.1021/jz900154h Zhao, 2012, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5, 9520, 10.1039/c2ee21737f Zhao, 2012, Time-dependent ion selectivity in capacitive charging of porous electrodes, J. Colloid Interface Sci., 384, 38, 10.1016/j.jcis.2012.06.022