Crystallographic engineering of Zn anodes for aqueous batteries
Tài liệu tham khảo
Wiser, 2016, Expert elicitation survey on future wind energy costs, Nat. Energy, 1, 10.1038/nenergy.2016.135
Wiser, 2021, Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050, Nat. Energy, 6, 555, 10.1038/s41560-021-00810-z
Egbert, 2000, Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data, Nature, 405, 775, 10.1038/35015531
Liu, 2021, A review of tidal current energy resource assessment in China, Renew. Sust. Energy Rev., 145, 10.1016/j.rser.2021.111012
Couderc, 2017, Solar energy: rock on, Nat. Energy, 2
Gong, 2019, Advances in solar energy conversion, Chem. Soc. Rev., 48, 1862, 10.1039/C9CS90020A
Kruitwagen, 2021, A global inventory of photovoltaic solar energy generating units, Nature, 598, 604, 10.1038/s41586-021-03957-7
Chen, 2012, Nanomaterials for renewable energy production and storage, Chem. Soc. Rev., 41, 7909, 10.1039/c2cs35230c
Wang, 2020, Graphitic carbon nitride (g-C3N4)-based nanosized heteroarrays: promising materials for photoelectrochemical water splitting, Carbon Energy, 2, 223, 10.1002/cey2.48
Yi, 2020, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries, Adv. Energy Mater., 11
Turcheniuk, 2018, Ten years left to redesign lithium-ion batteries, Nature, 559, 467, 10.1038/d41586-018-05752-3
Xu, 2014, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w
Harper, 2019, Recycling lithium-ion batteries from electric vehicles, Nature, 575, 75, 10.1038/s41586-019-1682-5
Vaalma, 2018, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 3, 10.1038/natrevmats.2018.13
Pramudita, 2017, An initial review of the status of electrode materials for potassium-ion batteries, Adv. Energy Mater., 7, 10.1002/aenm.201602911
Zhang, 2020, Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 60, 2861, 10.1002/anie.202012322
Yang, 2021, Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes, Adv. Mater., 33
Yang, 2019, Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries, Adv. Mater., 31, 10.1002/adma.201903778
Yang, 2020, Dendrites in Zn-based batteries, Adv. Mater., 32, 10.1002/adma.202001854
Yufit, 2018, Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries, Joule, 3, 485, 10.1016/j.joule.2018.11.002
Borchers, 2020, Innovative zinc-based batteries, J. Power Sources, 484
Yang, 2020, Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 9377, 10.1002/anie.202001844
Liu, 2020, Voltage issue of aqueous rechargeable metal-ion batteries, Chem. Soc. Rev., 49, 180, 10.1039/C9CS00131J
Hao, 2020, Designing dendrite-free zinc anodes for advanced aqueous zinc batteries, Adv. Funct. Mater., 30, 10.1002/adfm.202001263
Wang, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z
Zeng, 2020, Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry, Adv. Energy Mater., 10, 10.1002/aenm.201904163
Zhang, 2020, Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun., 11, 4463, 10.1038/s41467-020-18284-0
Cao, 2021, Fluorinated interphase enables reversible aqueous zinc battery chemistries, Nat. Nanotechnol., 16, 902, 10.1038/s41565-021-00905-4
Zhao, 2019, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12, 1938, 10.1039/C9EE00596J
Zeng, 2021, Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions, Adv. Mater., 33, 10.1002/adma.202007416
Wu, 2021, Stacked lamellar matrix enabling regulated deposition and superior thermo-kinetics for advanced aqueous Zn-ion system under practical conditions, Adv. Funct. Mater., 31, 10.1002/adfm.202107397
Wan, 2018, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nat. Commun., 9, 1656, 10.1038/s41467-018-04060-8
Hoang, 2017, Sustainable gel electrolyte containing Pb2+ as corrosion inhibitor and dendrite suppressor for the zinc anode in the rechargeable hybrid aqueous battery, Mater. Today Energy, 4, 34, 10.1016/j.mtener.2017.03.003
Xu, 2019, Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries, Nano Energy, 62, 275, 10.1016/j.nanoen.2019.05.042
Bayaguud, 2020, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries, ACS Energy Lett., 5, 3012, 10.1021/acsenergylett.0c01792
Hao, 2019, Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive, Adv. Funct. Mater., 29, 10.1002/adfm.201903605
Wang, 2022, Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries, Sci. Bull., 67, 716, 10.1016/j.scib.2022.01.010
HäUssermann, 2001, Origin of the c/a variation in hexagonal close-packed divalent metals, Phys. Rev. B, 64, 10.1103/PhysRevB.64.245114
Tran, 2016, Surface energies of elemental crystals, Sci. Data, 3, 10.1038/sdata.2016.80
Miller, 1969, Anisotropy of interfacial free energy of some hexagonal close-packed metals, Philos. Mag., 19, 305, 10.1080/14786436908217786
Gibbs, 1928, The Collected Works, vol. 1, 320
Searcy, 1983, The equilibrium shapes of crystals and of cavities in crystals, J. Solid State Chem., 48, 93, 10.1016/0022-4596(83)90062-2
Zheng, 2021, Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems, Sci. Adv., 7, 10.1126/sciadv.abe0219
Jäckle, 2014, Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth, J. Chem. Phys., 141
Jäckle, 2018, Self-diffusion barriers: possible descriptors for dendrite growth in batteries?, Energy Environ. Sci., 11, 3400, 10.1039/C8EE01448E
Zheng, 2019, Physical orphaning versus chemical instability: is dendritic electrodeposition of Li fatal?, ACS Energy Lett., 4, 1349, 10.1021/acsenergylett.9b00750
Fang, 2019, Quantifying inactive lithium in lithium metal batteries, Nature, 572, 511, 10.1038/s41586-019-1481-z
Pu, 2022, Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes, Adv. Mater., 34, 10.1002/adma.202202552
Ashton, 1968, Effect of crystal orientation on the anodic polarization and passivity of zinc, Corrosion, 24, 50, 10.5006/0010-9312-24.2.50
Abayarathna, 1991, Effects of sample orientation on the corrosion of zinc in ammonium sulfate and sodium hydroxide solutions, Corros. Sci., 32, 755, 10.1016/0010-938X(91)90089-8
Seré, 1999, Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets, Surf. Coat. Technol., 122, 143, 10.1016/S0257-8972(99)00325-4
Jia, 2020, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry, Chem. Rev., 120, 7795, 10.1021/acs.chemrev.9b00628
Porter, 2009
Zheng, 2019, Reversible epitaxial electrodeposition of metals in battery anodes, Science, 366, 645, 10.1126/science.aax6873
Yan, 2022, Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode, ACS Nano, 16, 9150, 10.1021/acsnano.2c01380
Cao, 2021, Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries, Adv. Energy Mater., 11, 10.1002/aenm.202101299
Zeng, 2022, Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes, Adv. Mater., 34, 10.1002/adma.202200342
Cao, 2020, A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode, J. Mater. Chem. A, 8, 9331, 10.1039/D0TA02486D
Zhou, 2021, Surface-preferred crystal plane for a stable and reversible zinc anode, Adv. Mater., 33
Zeng, 2021, Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode, Nanoscale, 13, 12223, 10.1039/D1NR02620H
Yang, 2021, Interfacial manipulation via in-situ grown ZnSe overlayer toward highly reversible Zn metal anodes, Adv. Mater., 33, 10.1002/adma.202105951
Zhao, 2021, Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries, Nat. Commun., 12, 6606, 10.1038/s41467-021-26947-9
Zhao, 2022, Semi-immobilized ionic liquid regulator with fast kinetics toward highly stable zinc anode under -35 to 60 °C, Adv. Mater., 34, 10.1002/adma.202203153
Cao, 2020, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 19292, 10.1002/anie.202008634
Li, 2021, Design of a solid electrolyte interphase for aqueous Zn batteries, Angew. Chem. Int. Ed., 60, 13035, 10.1002/anie.202103390
Yuan, 2021, Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries, Angew. Chem. Int. Ed., 60, 7213, 10.1002/anie.202015488
Chu, 2021, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes, Energy Environ. Sci., 14, 3609, 10.1039/D1EE00308A
Zhang, 2018, Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives, Angew. Chem. Int. Ed., 57, 15002, 10.1002/anie.201712702
Feng, 2021, Cyclic ether-water hybrid electrolyte-guided dendrite-free lamellar zinc deposition by tuning the solvation structure for high-performance aqueous zinc-ion batteries, ACS Appl. Mater. Interfaces, 13, 40638, 10.1021/acsami.1c11106
Hu, 2022, A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries, Adv. Mater., 34, 10.1002/adma.202203104
Liu, 2022, Steric molecular combing effect enables ultrafast self-healing electrolyte in quasi-solid-state zinc-ion batteries, ACS Energy Lett., 7, 2825, 10.1021/acsenergylett.2c01459
Leng, 2020, A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries, Adv. Funct. Mater., 30, 10.1002/adfm.202001317
Hao, 2022, Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode, Adv. Sci., 9, 10.1002/advs.202104832
Lin, 2022, Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte, Energy Stor. Mater., 49, 172
Elias, 2017, Effect of magnetic field on HER of water electrolysis on Ni-W alloy, Electrocatalysis, 8, 375, 10.1007/s12678-017-0382-x
Zeng, 2018, Magnetic field-enhanced 4-electron pathway for well-aligned Co3O4/electrospun carbon nanofibers in the oxygen reduction reaction, ChemSusChem, 11, 580, 10.1002/cssc.201701947
Katz, 2005, Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells, J. Am. Chem. Soc., 127, 3979, 10.1021/ja044157t
Monzon, 2012, Electrosynthesis of iron, cobalt, and zinc microcrystals and magnetic enhancement of the oxygen reduction reaction, Chem. Mater., 24, 3878, 10.1021/cm301766s
Garcés-Pineda, 2019, Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media, Nat. Energy, 4, 519, 10.1038/s41560-019-0404-4
Taniguchi, 2000, Control of crystal orientation in zinc electrodeposits by imposition of a high magnetic field, Mater. Ttrans. JIM, 41, 981, 10.2320/matertrans1989.41.981
Zheng, 2020, Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes, Sci. Adv., 6, 10.1126/sciadv.abb1122
Jin, 2018, Colossal grain growth yields single-crystal metal foils by contact-free annealing, Science, 362, 1021, 10.1126/science.aao3373
Wan, 2020, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun., 11, 829, 10.1038/s41467-020-14550-3
Luo, 2021, Interfacially redistributed charge for robust lithium metal anode, Nano Energy, 87, 10.1016/j.nanoen.2021.106212
Robert, 2013
He, 2021, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode, ACS Energy Lett., 6, 1990, 10.1021/acsenergylett.1c00638
Jiang, 2008, Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding, Acta Mater., 56, 1228, 10.1016/j.actamat.2007.11.017
Zheng, 2022, Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation, Adv. Mater., 34
Suwas, 2019, Texture evolution in severe plastic deformation processes, Mater. Trans., 60, 1457, 10.2320/matertrans.MF201933
Wang, 2003, Texture analysis in hexagonal materials, Mater. Chem. Phys., 81, 11, 10.1016/S0254-0584(03)00168-8
Hull, 2018, Electrodeposited epitaxial Cu(100) on Si(100) and lift-off of single crystal-like Cu(100) foils, ACS Appl. Mater. Interfaces, 10, 38596, 10.1021/acsami.8b13188
Zhang, 2021, Dynamic interphase-mediated assembly for deep cycling metal batteries, Sci. Adv., 7, 10.1126/sciadv.abl3752
Smith, 2020, Forces between solid surfaces in aqueous electrolyte solutions, Adv. Colloid Interface Sci., 275, 10.1016/j.cis.2019.102078
Christenson, 1984, DLVO (Derjaguin-Landau-Verwey-Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids, J. Chem. Soc., 1 80, 1933
Lee, 2003, Interaction forces between silica particles and wafer surfaces during chemical mechanical planarization of copper, J. Electrochem. Soc., 150, G327, 10.1149/1.1566417
Zhao, 2022, Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition, Nat. Commun., 13, 3252, 10.1038/s41467-022-30939-8
Zhou, 2021, Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries, Adv. Mater., 33, 10.1002/adma.202101649
Chen, 2022, Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes, Nano Energy, 98, 10.1016/j.nanoen.2022.107269
Zhang, 2021, Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer, Energy Environ. Sci., 14, 3120, 10.1039/D0EE03898A
Wang, 2022, Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes, Adv. Mater., 34
Cao, 2021, Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance, Nano Res., 15, 2030, 10.1007/s12274-021-3770-8
Cao, 2021, Ultrastable zinc anode by simultaneously manipulating solvation sheath and inducing oriented deposition with PEG stability promoter, Small, 18
Jin, 2021, Stabilizing zinc electrodeposition in a battery anode by controlling crystal growth, Small, 17, 10.1002/smll.202101798
Liu, 2022, Highly enhanced reversibility of a Zn anode by in-situ texturing, Energy Stor. Mater., 47, 98