Crystallographic engineering of Zn anodes for aqueous batteries

eScience - Tập 3 - Trang 100120 - 2023
Shuang Wu1, Zhenglin Hu1, Pan He2, Lingxiao Ren1, Jiaxing Huang2, Jiayan Luo3,4
1Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2School of engineering, Westlake University, Hangzhou 310024, China
3Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering, Shaoxing, 312000, China

Tài liệu tham khảo

Wiser, 2016, Expert elicitation survey on future wind energy costs, Nat. Energy, 1, 10.1038/nenergy.2016.135 Wiser, 2021, Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050, Nat. Energy, 6, 555, 10.1038/s41560-021-00810-z Egbert, 2000, Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data, Nature, 405, 775, 10.1038/35015531 Liu, 2021, A review of tidal current energy resource assessment in China, Renew. Sust. Energy Rev., 145, 10.1016/j.rser.2021.111012 Couderc, 2017, Solar energy: rock on, Nat. Energy, 2 Gong, 2019, Advances in solar energy conversion, Chem. Soc. Rev., 48, 1862, 10.1039/C9CS90020A Kruitwagen, 2021, A global inventory of photovoltaic solar energy generating units, Nature, 598, 604, 10.1038/s41586-021-03957-7 Chen, 2012, Nanomaterials for renewable energy production and storage, Chem. Soc. Rev., 41, 7909, 10.1039/c2cs35230c Wang, 2020, Graphitic carbon nitride (g-C3N4)-based nanosized heteroarrays: promising materials for photoelectrochemical water splitting, Carbon Energy, 2, 223, 10.1002/cey2.48 Yi, 2020, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries, Adv. Energy Mater., 11 Turcheniuk, 2018, Ten years left to redesign lithium-ion batteries, Nature, 559, 467, 10.1038/d41586-018-05752-3 Xu, 2014, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w Harper, 2019, Recycling lithium-ion batteries from electric vehicles, Nature, 575, 75, 10.1038/s41586-019-1682-5 Vaalma, 2018, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 3, 10.1038/natrevmats.2018.13 Pramudita, 2017, An initial review of the status of electrode materials for potassium-ion batteries, Adv. Energy Mater., 7, 10.1002/aenm.201602911 Zhang, 2020, Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 60, 2861, 10.1002/anie.202012322 Yang, 2021, Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes, Adv. Mater., 33 Yang, 2019, Do zinc dendrites exist in neutral zinc batteries: a developed electrohealing strategy to in situ rescue in-service batteries, Adv. Mater., 31, 10.1002/adma.201903778 Yang, 2020, Dendrites in Zn-based batteries, Adv. Mater., 32, 10.1002/adma.202001854 Yufit, 2018, Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries, Joule, 3, 485, 10.1016/j.joule.2018.11.002 Borchers, 2020, Innovative zinc-based batteries, J. Power Sources, 484 Yang, 2020, Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 9377, 10.1002/anie.202001844 Liu, 2020, Voltage issue of aqueous rechargeable metal-ion batteries, Chem. Soc. Rev., 49, 180, 10.1039/C9CS00131J Hao, 2020, Designing dendrite-free zinc anodes for advanced aqueous zinc batteries, Adv. Funct. Mater., 30, 10.1002/adfm.202001263 Wang, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z Zeng, 2020, Toward a reversible Mn4+/Mn2+ redox reaction and dendrite-free Zn anode in near-neutral aqueous Zn/MnO2 batteries via salt anion chemistry, Adv. Energy Mater., 10, 10.1002/aenm.201904163 Zhang, 2020, Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun., 11, 4463, 10.1038/s41467-020-18284-0 Cao, 2021, Fluorinated interphase enables reversible aqueous zinc battery chemistries, Nat. Nanotechnol., 16, 902, 10.1038/s41565-021-00905-4 Zhao, 2019, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12, 1938, 10.1039/C9EE00596J Zeng, 2021, Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions, Adv. Mater., 33, 10.1002/adma.202007416 Wu, 2021, Stacked lamellar matrix enabling regulated deposition and superior thermo-kinetics for advanced aqueous Zn-ion system under practical conditions, Adv. Funct. Mater., 31, 10.1002/adfm.202107397 Wan, 2018, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nat. Commun., 9, 1656, 10.1038/s41467-018-04060-8 Hoang, 2017, Sustainable gel electrolyte containing Pb2+ as corrosion inhibitor and dendrite suppressor for the zinc anode in the rechargeable hybrid aqueous battery, Mater. Today Energy, 4, 34, 10.1016/j.mtener.2017.03.003 Xu, 2019, Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries, Nano Energy, 62, 275, 10.1016/j.nanoen.2019.05.042 Bayaguud, 2020, Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries, ACS Energy Lett., 5, 3012, 10.1021/acsenergylett.0c01792 Hao, 2019, Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive, Adv. Funct. Mater., 29, 10.1002/adfm.201903605 Wang, 2022, Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries, Sci. Bull., 67, 716, 10.1016/j.scib.2022.01.010 HäUssermann, 2001, Origin of the c/a variation in hexagonal close-packed divalent metals, Phys. Rev. B, 64, 10.1103/PhysRevB.64.245114 Tran, 2016, Surface energies of elemental crystals, Sci. Data, 3, 10.1038/sdata.2016.80 Miller, 1969, Anisotropy of interfacial free energy of some hexagonal close-packed metals, Philos. Mag., 19, 305, 10.1080/14786436908217786 Gibbs, 1928, The Collected Works, vol. 1, 320 Searcy, 1983, The equilibrium shapes of crystals and of cavities in crystals, J. Solid State Chem., 48, 93, 10.1016/0022-4596(83)90062-2 Zheng, 2021, Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems, Sci. Adv., 7, 10.1126/sciadv.abe0219 Jäckle, 2014, Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth, J. Chem. Phys., 141 Jäckle, 2018, Self-diffusion barriers: possible descriptors for dendrite growth in batteries?, Energy Environ. Sci., 11, 3400, 10.1039/C8EE01448E Zheng, 2019, Physical orphaning versus chemical instability: is dendritic electrodeposition of Li fatal?, ACS Energy Lett., 4, 1349, 10.1021/acsenergylett.9b00750 Fang, 2019, Quantifying inactive lithium in lithium metal batteries, Nature, 572, 511, 10.1038/s41586-019-1481-z Pu, 2022, Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes, Adv. Mater., 34, 10.1002/adma.202202552 Ashton, 1968, Effect of crystal orientation on the anodic polarization and passivity of zinc, Corrosion, 24, 50, 10.5006/0010-9312-24.2.50 Abayarathna, 1991, Effects of sample orientation on the corrosion of zinc in ammonium sulfate and sodium hydroxide solutions, Corros. Sci., 32, 755, 10.1016/0010-938X(91)90089-8 Seré, 1999, Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets, Surf. Coat. Technol., 122, 143, 10.1016/S0257-8972(99)00325-4 Jia, 2020, Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry, Chem. Rev., 120, 7795, 10.1021/acs.chemrev.9b00628 Porter, 2009 Zheng, 2019, Reversible epitaxial electrodeposition of metals in battery anodes, Science, 366, 645, 10.1126/science.aax6873 Yan, 2022, Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode, ACS Nano, 16, 9150, 10.1021/acsnano.2c01380 Cao, 2021, Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries, Adv. Energy Mater., 11, 10.1002/aenm.202101299 Zeng, 2022, Nitrogen-doped carbon fibers embedded with zincophilic Cu nanoboxes for stable Zn-metal anodes, Adv. Mater., 34, 10.1002/adma.202200342 Cao, 2020, A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode, J. Mater. Chem. A, 8, 9331, 10.1039/D0TA02486D Zhou, 2021, Surface-preferred crystal plane for a stable and reversible zinc anode, Adv. Mater., 33 Zeng, 2021, Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode, Nanoscale, 13, 12223, 10.1039/D1NR02620H Yang, 2021, Interfacial manipulation via in-situ grown ZnSe overlayer toward highly reversible Zn metal anodes, Adv. Mater., 33, 10.1002/adma.202105951 Zhao, 2021, Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries, Nat. Commun., 12, 6606, 10.1038/s41467-021-26947-9 Zhao, 2022, Semi-immobilized ionic liquid regulator with fast kinetics toward highly stable zinc anode under -35 to 60 °C, Adv. Mater., 34, 10.1002/adma.202203153 Cao, 2020, Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries, Angew. Chem. Int. Ed., 59, 19292, 10.1002/anie.202008634 Li, 2021, Design of a solid electrolyte interphase for aqueous Zn batteries, Angew. Chem. Int. Ed., 60, 13035, 10.1002/anie.202103390 Yuan, 2021, Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries, Angew. Chem. Int. Ed., 60, 7213, 10.1002/anie.202015488 Chu, 2021, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes, Energy Environ. Sci., 14, 3609, 10.1039/D1EE00308A Zhang, 2018, Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives, Angew. Chem. Int. Ed., 57, 15002, 10.1002/anie.201712702 Feng, 2021, Cyclic ether-water hybrid electrolyte-guided dendrite-free lamellar zinc deposition by tuning the solvation structure for high-performance aqueous zinc-ion batteries, ACS Appl. Mater. Interfaces, 13, 40638, 10.1021/acsami.1c11106 Hu, 2022, A self-regulated electrostatic shielding layer toward dendrite-free Zn batteries, Adv. Mater., 34, 10.1002/adma.202203104 Liu, 2022, Steric molecular combing effect enables ultrafast self-healing electrolyte in quasi-solid-state zinc-ion batteries, ACS Energy Lett., 7, 2825, 10.1021/acsenergylett.2c01459 Leng, 2020, A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries, Adv. Funct. Mater., 30, 10.1002/adfm.202001317 Hao, 2022, Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode, Adv. Sci., 9, 10.1002/advs.202104832 Lin, 2022, Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte, Energy Stor. Mater., 49, 172 Elias, 2017, Effect of magnetic field on HER of water electrolysis on Ni-W alloy, Electrocatalysis, 8, 375, 10.1007/s12678-017-0382-x Zeng, 2018, Magnetic field-enhanced 4-electron pathway for well-aligned Co3O4/electrospun carbon nanofibers in the oxygen reduction reaction, ChemSusChem, 11, 580, 10.1002/cssc.201701947 Katz, 2005, Magnetic field effects on bioelectrocatalytic reactions of surface-confined enzyme systems: enhanced performance of biofuel cells, J. Am. Chem. Soc., 127, 3979, 10.1021/ja044157t Monzon, 2012, Electrosynthesis of iron, cobalt, and zinc microcrystals and magnetic enhancement of the oxygen reduction reaction, Chem. Mater., 24, 3878, 10.1021/cm301766s Garcés-Pineda, 2019, Direct magnetic enhancement of electrocatalytic water oxidation in alkaline media, Nat. Energy, 4, 519, 10.1038/s41560-019-0404-4 Taniguchi, 2000, Control of crystal orientation in zinc electrodeposits by imposition of a high magnetic field, Mater. Ttrans. JIM, 41, 981, 10.2320/matertrans1989.41.981 Zheng, 2020, Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes, Sci. Adv., 6, 10.1126/sciadv.abb1122 Jin, 2018, Colossal grain growth yields single-crystal metal foils by contact-free annealing, Science, 362, 1021, 10.1126/science.aao3373 Wan, 2020, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun., 11, 829, 10.1038/s41467-020-14550-3 Luo, 2021, Interfacially redistributed charge for robust lithium metal anode, Nano Energy, 87, 10.1016/j.nanoen.2021.106212 Robert, 2013 He, 2021, Detrimental effects of surface imperfections and unpolished edges on the cycling stability of a zinc foil anode, ACS Energy Lett., 6, 1990, 10.1021/acsenergylett.1c00638 Jiang, 2008, Texture, microstructure and mechanical properties of equiaxed ultrafine-grained Zr fabricated by accumulative roll bonding, Acta Mater., 56, 1228, 10.1016/j.actamat.2007.11.017 Zheng, 2022, Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation, Adv. Mater., 34 Suwas, 2019, Texture evolution in severe plastic deformation processes, Mater. Trans., 60, 1457, 10.2320/matertrans.MF201933 Wang, 2003, Texture analysis in hexagonal materials, Mater. Chem. Phys., 81, 11, 10.1016/S0254-0584(03)00168-8 Hull, 2018, Electrodeposited epitaxial Cu(100) on Si(100) and lift-off of single crystal-like Cu(100) foils, ACS Appl. Mater. Interfaces, 10, 38596, 10.1021/acsami.8b13188 Zhang, 2021, Dynamic interphase-mediated assembly for deep cycling metal batteries, Sci. Adv., 7, 10.1126/sciadv.abl3752 Smith, 2020, Forces between solid surfaces in aqueous electrolyte solutions, Adv. Colloid Interface Sci., 275, 10.1016/j.cis.2019.102078 Christenson, 1984, DLVO (Derjaguin-Landau-Verwey-Overbeek) theory and solvation forces between mica surfaces in polar and hydrogen-bonding liquids, J. Chem. Soc., 1 80, 1933 Lee, 2003, Interaction forces between silica particles and wafer surfaces during chemical mechanical planarization of copper, J. Electrochem. Soc., 150, G327, 10.1149/1.1566417 Zhao, 2022, Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition, Nat. Commun., 13, 3252, 10.1038/s41467-022-30939-8 Zhou, 2021, Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries, Adv. Mater., 33, 10.1002/adma.202101649 Chen, 2022, Polyvinyl alcohol coating induced preferred crystallographic orientation in aqueous zinc battery anodes, Nano Energy, 98, 10.1016/j.nanoen.2022.107269 Zhang, 2021, Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer, Energy Environ. Sci., 14, 3120, 10.1039/D0EE03898A Wang, 2022, Spontaneous construction of nucleophilic carbonyl-containing interphase toward ultrastable zinc-metal anodes, Adv. Mater., 34 Cao, 2021, Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance, Nano Res., 15, 2030, 10.1007/s12274-021-3770-8 Cao, 2021, Ultrastable zinc anode by simultaneously manipulating solvation sheath and inducing oriented deposition with PEG stability promoter, Small, 18 Jin, 2021, Stabilizing zinc electrodeposition in a battery anode by controlling crystal growth, Small, 17, 10.1002/smll.202101798 Liu, 2022, Highly enhanced reversibility of a Zn anode by in-situ texturing, Energy Stor. Mater., 47, 98