Multi-innovation stochastic gradient algorithms for multi-input multi-output systems

Digital Signal Processing - Tập 19 - Trang 545-554 - 2009
Lili Han1, Feng Ding1
1Control Science and Engineering Research Center, Jiangnan University, Wuxi 214122, PR China

Tài liệu tham khảo

Malik, 2008, State-space least mean square, Digital Signal Process., 18, 334, 10.1016/j.dsp.2007.05.003 Abrahamsson, 2007, Estimation of the parameters of a bilinear model with applications to submarine detection and system identification, Digital Signal Process., 17, 756, 10.1016/j.dsp.2006.04.005 Zerguine, 2007, Convergence and steady-state analysis of the normalized least mean fourth algorithm, Digital Signal Process., 17, 17, 10.1016/j.dsp.2006.01.005 Zazula, 2003, A common approach to the analysis of cumulant-based AR and ARMA identification, Digital Signal Process., 12, 233, 10.1016/S1051-2004(02)00025-8 James, 1994, Total least squares, matrix enhancement, and signal processing, Digital Signal Process., 4, 21, 10.1006/dspr.1994.1003 Sinha, 1979, Recursive estimation of the parameters of linears multivariable systems, Automatica, 15, 471, 10.1016/0005-1098(79)90022-0 El-Sherief, 1981, Parameters identification of a state-space model of multivariable systems using the extended least-squares method, IEEE Trans. Syst. Man Cybernet., 11, 223, 10.1109/TSMC.1981.4308656 Overshee, 1994, N4SID: Subspace algorithm for the identification of combined determine–stochastic systems, Automatica, 30, 75, 10.1016/0005-1098(94)90230-5 Verhaegen, 1994, Identification of the deterministic part of MIMO state space models given in innovations form input–output data, Automatica, 30, 61, 10.1016/0005-1098(94)90229-1 Chou, 1997, Subspace algorithms for the identification of multivariable dynamic error-in-variable models, Automatica, 33, 1857, 10.1016/S0005-1098(97)00092-7 Zhang, 2005, Subspace system identification for training-based MIMO channel estimation, Automatica, 41, 1623, 10.1016/j.automatica.2005.04.010 Ding, 2005, Hierarchical gradient-based identification of multivariable discrete-time systems, Automatica, 41, 315, 10.1016/j.automatica.2004.10.010 Ding, 2005, Hierarchical least squares identification methods for multivariable systems, IEEE Trans. Automat. Control, 50, 397, 10.1109/TAC.2005.843856 Goodwin, 1984 Ding, 2008, Performance analysis of stochastic gradient algorithms under weak conditions, Sci. China Ser. F—Inform. Sci., 51, 1269, 10.1007/s11432-008-0117-y Ding, 2007, Performance analysis of multi-innovation gradient type identification methods, Automatica, 43, 1, 10.1016/j.automatica.2006.07.024 Ding, 2007, Multi-innovation least squares identification methods based on the auxiliary model for MISO systems, Appl. Math. Comput., 187, 658 Ding, 2008, Parameter identification of multi-input, single-output systems based on FIR models and least squares principle, Appl. Math. Comput., 197, 297