Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ

Nature - Tập 395 Số 6698 - Trang 137-143 - 1998
Robert T. Nolte1, G. Bruce Wisely1, Stefan Westin2, Jeffery E. Cobb3, Millard H. Lambert1, Riki Kurokawa2, Michael G. Rosenfeld4, Timothy M. Willson3, Christopher K. Glass2, Michael Preuß1
1Department of Structural Chemistry, North Carolina, 27709, USA
2Division of Cellular and Molecular Medicine, San Diego, La Jolla, 92093-0651, California, USA
3Department of Medicinal Chemistry, Division of Chemistry, Glaxo Wellcome Research and Development, Research Triangle Park, North Carolina, 27709, USA
4Department of Medicine, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, 92093-0651, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mangelsdorf, D. J.et al. The nuclear receptor superfamily: the second decade. Cell 83, 835–839 (1995).

Kliewer, S. A.et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc. Natl Acad. Sci. USA 94, 4318–4323 (1997).

Forman, B. M., Chen, J. & Evans, R. M. Hypolipidemic drugs, polyunsaturated fatty acids and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc. Natl Acad. Sci. USA 94, 4312–4317 (1997).

Kliewer, S. A.et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl Acad. Sci. USA 91, 7355–7359 (1994).

Chawla, A., Schwartz, E. J., Dimaculangan, D. D. & Lazar, M. A. Peroxisome proliferator-activated receptor γ: adipose-predominant expression and induction early in adipocyte differentiation. Endocrinol. 135, 798–800 (1994).

Willson, T. M.et al. The structure-activity relationship between peroxisome proliferator-activated receptor γ agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 39, 665–668 (1996).

Wu, Z., Bucher, N. L. R. & Farmer, S. R. Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ and glucocorticoids. Mol. Cell. Biol. 16, 4128–4136 (1996).

Tontonoz, P., Hu, E., Graves, R., Budavari, A. & Spiegelman, B. mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid activated transcription factor. Cell 79, 1147–1156 (1994).

Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

Tontonoz, P., Nagy, L., Alvarez, J. G. A., Thomazy, V. A. & Evans, R. M. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 93, 241–252 (1998).

Brun, R. P.et al. Differential activation of adipogenesis by multiple PPAR isoforms. Genes Dev. 10, 974–984 (1996).

Lehmann, J. M.et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

Hulin, B., McCarthy, P. A. & Gibbs, E. M. The glitazone family of antidiabetic agents. Curr. Pharm. Des. 2, 85–102 (1996).

Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 240, 889–895 (1988).

Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377–382 (1995).

Wagner, R. L.et al. Astructural role for hormone in the thyroid hormone receptor. Nature 378, 690–697 (1995).

Renaud, J.-P.et al. Crystal structure of the RAR-γ ligand-binding domain bound to all-trans retinoic acid. Nature 378, 681–689 (1995).

Brzozowski, A. M.et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753–758 (1997).

Horwitz, K. B.et al. Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10, 1167–1177 (1996).

Glass, C. K., Rose, D. W. & Rosenfeld, M. G. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9, 222–232 (1997).

Barettino, D., Vivanco Ruiz, M. M. & Stunnenberg, H. G. Characterization of the ligand-dependent transactivation domain of thyroid hormone receptor. EMBO J. 13, 3039–3049 (1994).

Danielian, P. S., White, R., Lees, J. A. & Parker, M. G. Identification of a conserved region required for hormone-dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025–1033 (1992).

Durand, B.et al. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor; presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13, 5370–5382 (1994).

Tone, Y., Collingwood, T. N., Adams, M. & Chatterjee, V. K. Functional analysis of a transactivation domain in the thyroid hormone beta receptor. J. Biol. Chem. 269, 31157–31161 (1994).

Voegel, J. J., Heine, M. J. S., Zechel, C., Chambon, P. & Gronemeyer, H. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675 (1996).

Torchia, J.et al. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387, 677–684 (1997).

Zhu, Y., Qi, C., Calandra, C., Rao, M. S. & Reddy, J. K. Cloning and identification of mouse steroid receptor coactivator-1 (mSRC-1), as a coactivator of peroxisome proliferator-activated receptor γ. Gene Expr. 6, 185–195 (1996).

Hong, H., Kohli, K., Garabedian, M. J. & Stallcup, M. R. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid and vitamin D receptors. Mol. Cell. Biol. 17, 2735–2744 (1997).

Anzick, S. L.et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277, 965–968 (1997).

Chen, H.et al. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90, 569–580 (1997).

Kamei, Y.et al. ACBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

Voegel, J. J.et al. The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17, 507–519 (1998).

Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. Asignature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387, 733–736 (1997).

Keen, H. Insulin resistance and the prevention of diabetes mellitus. New. Eng. J. Med. 331, 1226–1227 (1994).

Buckle, D. R.et al. Non-thazolidinedione antihyperglycemic agents. 2: α-Carbon substituted β-phenylpropanoic acids. Bioorg. Med. Chem. Lett. 6, 2127–2130 (1996).

Westin, S.et al. Interactions controlling complexes of nuclear-receptor heterodimers and co-activators. Nature 395, 199–202 (1998).

Feng, X.et al. Suprabasal expression of a dominant-negative RXR alpha mutant in transgenic mouse epidermis impairs regulation of gene transcription and basal keratinocyte proliferation by RAR-selective retinoids. Genes Dev. 11, 59–71 (1997).

Durand, B.et al. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13, 5370–5382 (1994).

Henttu, P. M. A., Kalkhoven, E. & Parker, M. G. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell. Biol. 17, 1832–1839 (1997).

Kurokawa, R.et al. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371, 528–531 (1994).

Forman, B. M., Umesono, K., Chen, J. & Evans, R. M. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 81, 541–550 (1995).

Otwinowski, Z., Isaacs, N. & Burley, S. in Proc. CCP4 Study Weekend (ed. Sawyer, L.) 56–62 (SERC Caresbury Lab., Daresbury, (1993)).

Furey, W. S. & Swaminathin, S. in Methods in Enzymology: Macromolecular Crystallography Part B Vol. 277 (eds Carter, C. & Sweet, R.) 590–620 (Academic, Orlando, (1997)).

Cowtan, K. “DM”: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newsletter Protein Crystallogr. 31, 34–38 (1994).

Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Cryst. D 50, 760–776 (1994).

Brunger, A. X-PLOR Version 3.0: A System for Crystallography and NMR (Yale Univ. Press, New Haven, (1992)).

Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A 47, 110–119 (1991).