GABAergic signaling by cells of the immune system: more the rule than the exception

Cellular and Molecular Life Sciences - Tập 78 - Trang 5667-5679 - 2021
Amol K. Bhandage1, Antonio Barragan1
1Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden

Tóm tắt

Gamma-aminobutyric acid (GABA) is best known as an essential neurotransmitter in the evolved central nervous system (CNS) of vertebrates. However, GABA antedates the development of the CNS as a bioactive molecule in metabolism and stress-coupled responses of prokaryotes, invertebrates and plants. Here, we focus on the emerging findings of GABA signaling in the mammalian immune system. Recent reports show that mononuclear phagocytes and lymphocytes, for instance dendritic cells, microglia, T cells and NK cells, express a GABAergic signaling machinery. Mounting evidence shows that GABA receptor signaling impacts central immune functions, such as cell migration, cytokine secretion, immune cell activation and cytotoxic responses. Furthermore, the GABAergic signaling machinery of leukocytes is implicated in responses to microbial infection and is co-opted by protozoan parasites for colonization of the host. Peripheral GABA signaling is also implicated in inflammatory conditions and diseases, such as type 1 diabetes, rheumatoid arthritis and cancer cell metastasis. Adding to its role in neurotransmission, growing evidence shows that the non-proteinogenic amino acid GABA acts as an intercellular signaling molecule in the immune system and, as an interspecies signaling molecule in host–microbe interactions. Altogether, the data raise the assumption of conserved GABA signaling in a broad range of mammalian cells and diversification of function in the immune system.

Tài liệu tham khảo

Steward FC, Thompson JF, Dent CE (1949) γ-aminobutyric acid: a constituent of the potato tuber? Science 110:439–440 Roberts E, Frankel S (1950) Gamma-aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem 187(1):55–63 Roth RJ, Cooper JR, Bloom FE (2003) The biochemical basis of neuropharmacology. Oxford University Press, Oxford [Oxfordshire], p 106 (ISBN 978-0-19-514008-8) Ueno H (2000) Enzymatic and structural aspects on glutamate decarboxylase. J Mol Catal B Enzym 10(1–3):67–79. https://doi.org/10.1016/S1381-1177(00)00114-4 Erdo SL, Wolff JR (1990) Gamma-aminobutyric acid outside the mammalian brain. J Neurochem 54(2):363–372. https://doi.org/10.1111/j.1471-4159.1990.tb01882.x Gladkevich A, Korf J, Hakobyan VP, Melkonyan KV (2006) The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci 124(1–2):1–8. https://doi.org/10.1016/j.autneu.2005.11.002 Ben-Othman N, Vieira A, Courtney M, Record F, Gjernes E, Avolio F, Hadzic B, Druelle N, Napolitano T, Navarro-Sanz S, Silvano S, Al-Hasani K, Pfeifer A, Lacas-Gervais S, Leuckx G, Marroqui L, Thevenet J, Madsen OD, Eizirik DL, Heimberg H, Kerr-Conte J, Pattou F, Mansouri A, Collombat P (2017) Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell 168(1–2):73-85.e11. https://doi.org/10.1016/j.cell.2016.11.002 Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C, Kowolik CM, Li H, Hambrecht AC, Roberts E, Jandial R (2014) Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci USA 111(3):984–989. https://doi.org/10.1073/pnas.1322098111 Bhat R, Axtell R, Mitra A, Miranda M, Lock C, Tsien RW, Steinman L (2010) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA 107(6):2580–2585. https://doi.org/10.1073/pnas.0915139107 (0915139107[pii]) Takehara A, Hosokawa M, Eguchi H, Ohigashi H, Ishikawa O, Nakamura Y, Nakagawa H (2007) Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit. Cancer Res 67(20):9704–9712. https://doi.org/10.1158/0008-5472.CAN-07-2099 Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M, Huber KV, Schmitner N, Kimmel RA, Romanov RA, Sturtzel C, Lardeau CH, Klughammer J, Farlik M, Sdelci S, Vieira A, Avolio F, Briand F, Baburin I, Majek P, Pauler FM, Penz T, Stukalov A, Gridling M, Parapatics K, Barbieux C, Berishvili E, Spittler A, Colinge J, Bennett KL, Hering S, Sulpice T, Bock C, Distel M, Harkany T, Meyer D, Superti-Furga G, Collombat P, Hecksher-Sorensen J, Kubicek S (2017) Artemisinins target GABAA receptor signaling and impair alpha cell identity. Cell 168(1–2):86-100.e115. https://doi.org/10.1016/j.cell.2016.11.010 Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19(12):500–505 Hoglund PJ, Adzic D, Scicluna SJ, Lindblom J, Fredriksson R (2005) The repertoire of solute carriers of family 6: identification of new human and rodent genes. Biochem Biophys Res Commun 336(1):175–189. https://doi.org/10.1016/j.bbrc.2005.08.048 Olsen RW, Sieghart W (2008) International union of pharmacology. LXX. Subtypes of gamma-aminobutyric acid (A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60(3):243–260. https://doi.org/10.1124/pr.108.00505 Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA (B) receptors. Physiol Rev 84(3):835–867. https://doi.org/10.1152/physrev.00036.2003 Uusi-Oukari M, Korpi ER (2010) Regulation of GABA (A) receptor subunit expression by pharmacological agents. Pharmacol Rev 62(1):97–135. https://doi.org/10.1124/pr.109.002063 Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J (2014) Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 15(10):637–654. https://doi.org/10.1038/nrn3819 Bortone D, Polleux F (2009) KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron 62(1):53–71. https://doi.org/10.1016/j.neuron.2009.01.034 Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA (A) receptors. Nat Rev Neurosci 6(3):215–229. https://doi.org/10.1038/nrn1625 Brickley SG, Mody I (2012) Extrasynaptic GABA (A) receptors: their function in the CNS and implications for disease. Neuron 73(1):23–34. https://doi.org/10.1016/j.neuron.2011.12.012 Jin Z, Jin Y, Kumar-Mendu S, Degerman E, Groop L, Birnir B (2011) Insulin reduces neuronal excitability by turning on GABA (A) channels that generate tonic current. PLoS ONE 6(1):e16188. https://doi.org/10.1371/journal.pone.0016188 de Groote L, Linthorst AC (2007) Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus. Neuroscience 148(3):794–805. https://doi.org/10.1016/j.neuroscience.2007.06.030 (S0306-4522(07)00856-1[pii]) Petty F, Sherman AD (1984) Plasma GABA levels in psychiatric illness. J Affect Disord 6(2):131–138 (0165-0327(84)90018-1[pii]) Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci 6(5):484–490 (10.1038/nn1043.nn1043[pii]) Laurenti E, Gottgens B (2018) From haematopoietic stem cells to complex differentiation landscapes. Nature 553(7689):418–426. https://doi.org/10.1038/nature25022 Iwasaki A, Medzhitov R (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16(4):343–353. https://doi.org/10.1038/ni.3123 Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ (2012) Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 248(1):188–204. https://doi.org/10.1111/j.1600-065X.2012.01138.x Levite M (2012) Nerve-driven immunity. Neurotransmitters and neuropeptides in the immune system. Springer. https://doi.org/10.1016/j.bbi.2012.12.009 (ISBN 978-3-7091-0887-1) Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578. https://doi.org/10.1038/nri3712 Alvarez D, Vollmann EH, von Andrian UH (2008) Mechanisms and consequences of dendritic cell migration. Immunity 29(3):325–342. https://doi.org/10.1016/j.immuni.2008.08.006 Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8(5):362–371. https://doi.org/10.1038/nri2297 (nri2297[pii]) Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nat Immunol 3(11):1041–1047 Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449(7161):419–426 (nature06175[pii]) Bhandage AK, Olivera GC, Kanatani S, Thompson E, Lore K, Varas-Godoy M, Barragan A (2020) A motogenic GABAergic system of mononuclear phagocytes facilitates dissemination of coccidian parasites. Elife. https://doi.org/10.7554/eLife.60528 Fuks JM, Arrighi RB, Weidner JM, Kumar Mendu S, Jin Z, Wallin RP, Rethi B, Birnir B, Barragan A (2012) GABAergic signaling is linked to a hypermigratory phenotype in dendritic cells infected by Toxoplasma gondii. PLoS Pathog 8(12):e1003051. https://doi.org/10.1371/journal.ppat.1003051 Kanatani S, Fuks JM, Olafsson EB, Westermark L, Chambers B, Varas-Godoy M, Uhlen P, Barragan A (2017) Voltage-dependent calcium channel signaling mediates GABAA receptor-induced migratory activation of dendritic cells infected by Toxoplasma gondii. PLoS Pathog 13(12):e1006739. https://doi.org/10.1371/journal.ppat.1006739 Kim JK, Kim YS, Lee HM, Jin HS, Neupane C, Kim S, Lee SH, Min JJ, Sasai M, Jeong JH, Choe SK, Kim JM, Yamamoto M, Choy HE, Park JB, Jo EK (2018) GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat Commun 9(1):4184. https://doi.org/10.1038/s41467-018-06487-5 Xia Y, He F, Wu X, Tan B, Chen S, Liao Y, Qi M, Chen S, Peng Y, Yin Y, Ren W (2021) GABA transporter sustains IL-1beta production in macrophages. Sci Adv. https://doi.org/10.1126/sciadv.abe9274 Reyes-Garcia MG, Hernandez-Hernandez F, Hernandez-Tellez B, Garcia-Tamayo F (2007) GABA (A) receptor subunits RNA expression in mice peritoneal macrophages modulate their IL-6/IL-12 production. J Neuroimmunol 188(1–2):64–68. https://doi.org/10.1016/j.jneuroim.2007.05.013 Wheeler DW, Thompson AJ, Corletto F, Reckless J, Loke JC, Lapaque N, Grant AJ, Mastroeni P, Grainger DJ, Padgett CL, O’Brien JA, Miller NG, Trowsdale J, Lummis SC, Menon DK, Beech JS (2011) Anaesthetic impairment of immune function is mediated via GABA (A) receptors. PLoS ONE 6(2):e17152. https://doi.org/10.1371/journal.pone.0017152 Robert V, Triffaux E, Paulet PE, Guery JC, Pelletier L, Savignac M (2014) Protein kinase C-dependent activation of CaV1.2 channels selectively controls human TH2-lymphocyte functions. J Allergy Clin Immunol 133(4):1175–1183. https://doi.org/10.1016/j.jaci.2013.10.038 Lee M, Schwab C, McGeer PL (2011) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59(1):152–165. https://doi.org/10.1002/glia.21087 Bhandage AK, Kanatani S, Barragan A (2019) Toxoplasma-induced hypermigration of primary cortical microglia implicates GABAergic signaling. Front Cell Infect Microbiol 9:73. https://doi.org/10.3389/fcimb.2019.00073 Kuhn SA, van Landeghem FK, Zacharias R, Farber K, Rappert A, Pavlovic S, Hoffmann A, Nolte C, Kettenmann H (2004) Microglia express GABA (B) receptors to modulate interleukin release. Mol Cell Neurosci 25(2):312–322. https://doi.org/10.1016/j.mcn.2003.10.023 Mendu SK, Bhandage A, Jin Z, Birnir B (2012) Different subtypes of GABA-A receptors are expressed in human, mouse and rat T lymphocytes. PLoS ONE 7(8):e42959. https://doi.org/10.1371/journal.pone.0042959 Dionisio L, Jose De Rosa M, Bouzat C, Esandi Mdel C (2011) An intrinsic GABAergic system in human lymphocytes. Neuropharmacology 60(2–3):513–519. https://doi.org/10.1016/j.neuropharm.2010.11.007 Kotturi MF, Carlow DA, Lee JC, Ziltener HJ, Jefferies WA (2003) Identification and functional characterization of voltage-dependent calcium channels in T lymphocytes. J Biol Chem 278(47):46949–46960. https://doi.org/10.1074/jbc.M309268200 Alam S, Laughton DL, Walding A, Wolstenholme AJ (2006) Human peripheral blood mononuclear cells express GABAA receptor subunits. Mol Immunol 43(9):1432–1442. https://doi.org/10.1016/j.molimm.2005.07.025 Stokes L, Gordon J, Grafton G (2004) Non-voltage-gated L-type Ca2+ channels in human T cells: pharmacology and molecular characterization of the major alpha pore-forming and auxiliary beta-subunits. J Biol Chem 279(19):19566–19573. https://doi.org/10.1074/jbc.M401481200 Bhandage AK, Jin Z, Korol SV, Shen Q, Pei Y, Deng Q, Espes D, Carlsson PO, Kamali-Moghaddam M, Birnir B (2018) GABA regulates release of inflammatory cytokines from peripheral blood mononuclear cells and CD4(+) T cells and is immunosuppressive in type 1 diabetes. EBioMedicine 30:283–294. https://doi.org/10.1016/j.ebiom.2018.03.019 Wang Y, Feng D, Liu G, Luo Q, Xu Y, Lin S, Fei J, Xu L (2008) Gamma-aminobutyric acid transporter 1 negatively regulates T cell-mediated immune responses and ameliorates autoimmune inflammation in the CNS. J Immunol 181(12):8226–8236. https://doi.org/10.4049/jimmunol.181.12.8226 Kochl R, Thelen F, Vanes L, Brazao TF, Fountain K, Xie J, Huang CL, Lyck R, Stein JV, Tybulewicz VL (2016) WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol 17(9):1075–1083. https://doi.org/10.1038/ni.3495 Wang H, Zhang X, Xue L, Xing J, Jouvin MH, Putney JW, Anderson MP, Trebak M, Kinet JP (2016) Low-voltage-activated CaV3.1 calcium channels shape T helper cell cytokine profiles. Immunity 44(4):782–794. https://doi.org/10.1016/j.immuni.2016.01.015 Bhandage AK, Friedrich LM, Kanatani S, Jakobsson-Björkén S, Escrig-Larena JI, Wagner AK, Chambers BJ, Barragan A (2021) GABAergic signaling in human and murine NK cells upon challenge with Toxoplasma gondii. J Leukoc Biol J Leukoc Biol. https://doi.org/10.1002/JLB.3HI0720-431R Grafton G, Stokes L, Toellner KM, Gordon J (2003) A non-voltage-gated calcium channel with L-type characteristics activated by B cell receptor ligation. Biochem Pharmacol 66(10):2001–2009. https://doi.org/10.1016/j.bcp.2003.07.005 Rane MJ, Gozal D, Butt W, Gozal E, Pierce WM Jr, Guo SZ, Wu R, Goldbart AD, Thongboonkerd V, McLeish KR, Klein JB (2005) Gamma-amino butyric acid type B receptors stimulate neutrophil chemotaxis during ischemia-reperfusion. J Immunol 174(11):7242–7249. https://doi.org/10.4049/jimmunol.174.11.7242 Kaufman DL, Houser CR, Tobin AJ (1991) Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56(2):720–723. https://doi.org/10.1111/j.1471-4159.1991.tb08211.x Feldblum S, Erlander MG, Tobin AJ (1993) Different distributions of GAD65 and GAD67 mRNAs suggest that the two glutamate decarboxylases play distinctive functional roles. J Neurosci Res 34(6):689–706. https://doi.org/10.1002/jnr.490340612 Davis AM, Penschuck S, Fritschy JM, McCarthy MM (2000) Developmental switch in the expression of GABA (A) receptor subunits alpha (1) and alpha (2) in the hypothalamus and limbic system of the rat. Brain Res Dev Brain Res 119(1):127–138. https://doi.org/10.1016/s0165-3806(99)00150-9 Goetz T, Arslan A, Wisden W, Wulff P (2007) GABA (A) receptors: structure and function in the basal ganglia. Prog Brain Res 160:21–41. https://doi.org/10.1016/S0079-6123(06)60003-4 Lambert H, Hitziger N, Dellacasa I, Svensson M, Barragan A (2006) Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell Microbiol 8(10):1611–1623. https://doi.org/10.1111/j.1462-5822.2006.00735.x Weidner JM, Barragan A (2014) Tightly regulated migratory subversion of immune cells promotes the dissemination of Toxoplasma gondii. Int J Parasitol 44(2):85–90. https://doi.org/10.1016/j.ijpara.2013.09.006 Sizemore GM, Sizemore ST, Seachrist DD, Keri RA (2014) GABA (A) receptor pi (GABRP) stimulates basal-like breast cancer cell migration through activation of extracellular-regulated kinase 1/2 (ERK1/2). J Biol Chem 289(35):24102–24113. https://doi.org/10.1074/jbc.M114.593582 Wu W, Yang Q, Fung KM, Humphreys MR, Brame LS, Cao A, Fang YT, Shih PT, Kropp BP, Lin HK (2014) Linking gamma-aminobutyric acid A receptor to epidermal growth factor receptor pathways activation in human prostate cancer. Mol Cell Endocrinol 383(1–2):69–79. https://doi.org/10.1016/j.mce.2013.11.017 Miao Y, Zhang Y, Wan H, Chen L, Wang F (2010) GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed Pharmacother 64(9):583–588. https://doi.org/10.1016/j.biopha.2010.03.006 Weidner JM, Kanatani S, Hernandez-Castaneda MA, Fuks JM, Rethi B, Wallin RP, Barragan A (2013) Rapid cytoskeleton remodelling in dendritic cells following invasion by Toxoplasma gondii coincides with the onset of a hypermigratory phenotype. Cell Microbiol 15(10):1735–1752. https://doi.org/10.1111/cmi.12145 Olafsson EB, Ross EC, Varas-Godoy M, Barragan A (2019) TIMP-1 promotes hypermigration of Toxoplasma-infected primary dendritic cells via CD63-ITGB1-FAK signaling. J Cell Sci. https://doi.org/10.1242/jcs.225193 Olafsson EB, Ten Hoeve AL, Li-Wang X, Westermark L, Varas-Godoy M, Barragan A (2020) Convergent met and voltage-gated Ca(2+) channel signaling drives hypermigration of Toxoplasma-infected dendritic cells. J Cell Sci. https://doi.org/10.1242/jcs.241752 Behar TN, Schaffner AE, Colton CA, Somogyi R, Olah Z, Lehel C, Barker JL (1994) GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons. J Neurosci 14(1):29–38 Azuma H, Inamoto T, Sakamoto T, Kiyama S, Ubai T, Shinohara Y, Maemura K, Tsuji M, Segawa N, Masuda H, Takahara K, Katsuoka Y, Watanabe M (2003) Gamma-aminobutyric acid as a promoting factor of cancer metastasis; induction of matrix metalloproteinase production is potentially its underlying mechanism. Cancer Res 63(23):8090–8096 Calogero AE, Hall J, Fishel S, Green S, Hunter A, D’Agata R (1996) Effects of gamma-aminobutyric acid on human sperm motility and hyperactivation. Mol Hum Reprod 2(10):733–738 Sanders RD, Godlee A, Fujimori T, Goulding J, Xin G, Salek-Ardakani S, Snelgrove RJ, Ma D, Maze M, Hussell T (2013) Benzodiazepine augmented gamma-amino-butyric acid signaling increases mortality from pneumonia in mice. Crit Care Med 41(7):1627–1636. https://doi.org/10.1097/CCM.0b013e31827c0c8d Januzi L, Poirier JW, Maksoud MJE, Xiang YY, Veldhuizen RAW, Gill SE, Cregan SP, Zhang H, Dekaban GA, Lu WY (2018) Autocrine GABA signaling distinctively regulates phenotypic activation of mouse pulmonary macrophages. Cell Immunol 332:7–23. https://doi.org/10.1016/j.cellimm.2018.07.001 Zhu Y, Zhang R, Zhang B, Zhao T, Wang P, Liang G, Cheng G (2017) Blood meal acquisition enhances arbovirus replication in mosquitoes through activation of the GABAergic system. Nat Commun 8(1):1262. https://doi.org/10.1038/s41467-017-01244-6 Falk-Petersen CB, Tsonkov TM, Nielsen MS, Harpsoe K, Bundgaard C, Frolund B, Kristiansen U, Gloriam DE, Wellendorph P (2020) Discovery of a new class of orthosteric antagonists with nanomolar potency at extrasynaptic GABAA receptors. Sci Rep 10(1):10078. https://doi.org/10.1038/s41598-020-66821-0 Tian J, Middleton B, Lee VS, Park HW, Zhang Z, Kim B, Lowe C, Nguyen N, Liu H, Beyer RS, Chao HW, Chen R, Mai D, O’Laco KA, Song M, Kaufman DL (2021) GABAB-receptor agonist-based immunotherapy for type 1 diabetes in NOD mice. Biomedicines. https://doi.org/10.3390/biomedicines9010043 Neumann S, Boothman-Burrell L, Gowing EK, Jacobsen TA, Ahring PK, Young SL, Sandager-Nielsen K, Clarkson AN (2019) The delta-subunit selective GABA A receptor modulator, DS2, improves stroke recovery via an anti-inflammatory mechanism. Front Neurosci 13:1133. https://doi.org/10.3389/fnins.2019.01133 Kaila K (1994) Ionic basis of GABAA receptor channel function in the nervous system. Prog Neurobiol 42(4):489–537. https://doi.org/10.1016/0301-0082(94)90049-3 Martin C, Pedersen SF, Schwab A, Stock C (2011) Intracellular pH gradients in migrating cells. Am J Physiol Cell Physiol 300(3):C490-495. https://doi.org/10.1152/ajpcell.00280.2010 Rajamaki K, Nordstrom T, Nurmi K, Akerman KE, Kovanen PT, Oorni K, Eklund KK (2013) Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem 288(19):13410–13419. https://doi.org/10.1074/jbc.M112.426254 Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. https://doi.org/10.1126/science.1194637 Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318 Thurgur H, Pinteaux E (2019) Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after central nervous system disorders. Neuroscience 405:55–67. https://doi.org/10.1016/j.neuroscience.2018.06.046 Cao T, Thomas TC, Ziebell JM, Pauly JR, Lifshitz J (2012) Morphological and genetic activation of microglia after diffuse traumatic brain injury in the rat. Neuroscience 225:65–75. https://doi.org/10.1016/j.neuroscience.2012.08.058 Han Q, Liu S, Li Z, Hu F, Zhang Q, Zhou M, Chen J, Lei T, Zhang H (2014) DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia. Brain Res 1542:176–185. https://doi.org/10.1016/j.brainres.2013.10.026 Cheung G, Kann O, Kohsaka S, Faerber K, Kettenmann H (2009) GABAergic activities enhance macrophage inflammatory protein-1alpha release from microglia (brain macrophages) in postnatal mouse brain. J Physiol 587:753–768. https://doi.org/10.1113/jphysiol.2008.163923 (Pt 4) John B, Ricart B, Tait Wojno ED, Harris TH, Randall LM, Christian DA, Gregg B, De Almeida DM, Weninger W, Hammer DA, Hunter CA (2011) Analysis of behavior and trafficking of dendritic cells within the brain during Toxoplasmic encephalitis. PLoS Pathog 7(9):e1002246. https://doi.org/10.1371/journal.ppat.1002246 Brooks JM, Carrillo GL, Su J, Lindsay DS, Fox MA, Blader IJ (2015) Toxoplasma gondii infections alter GABAergic synapses and signaling in the central nervous system. MBio 6(6):e01428-e11415. https://doi.org/10.1128/mBio.01428-15 Weidner JM, Kanatani S, Uchtenhagen H, Varas-Godoy M, Schulte T, Engelberg K, Gubbels MJ, Sun HS, Harrison RE, Achour A, Barragan A (2016) Migratory activation of parasitized dendritic cells by the protozoan Toxoplasma gondii 14–3–3 protein. Cell Microbiol. https://doi.org/10.1111/cmi.12595 Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M, Fariss RN, Li W, Wong WT (2011) Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS ONE 6(1):e15973. https://doi.org/10.1371/journal.pone.0015973 Kumar BV, Connors TJ, Farber DL (2018) Human T cell development, localization, and function throughout life. Immunity 48(2):202–213. https://doi.org/10.1016/j.immuni.2018.01.007 Barragan A, Weidner JM, Jin Z, Korpi ER, Birnir B (2015) GABAergic signalling in the immune system. Acta Physiol 213(4):819–827. https://doi.org/10.1111/apha.12467 Birnir B, Korpi ER (2007) The impact of sub-cellular location and intracellular neuronal proteins on properties of GABA (A) receptors. Curr Pharm Des 13(31):3169–3177 Jin Z, Mendu SK, Birnir B (2013) GABA is an effective immunomodulatory molecule. Amino Acids 45(1):87–94 Bhandage AK, Hellgren C, Jin Z, Olafsson EB, Sundstrom-Poromaa I, Birnir B (2015) Expression of GABA receptors subunits in peripheral blood mononuclear cells is gender dependent, altered in pregnancy and modified by mental health. Acta Physiol 213(3):575–585. https://doi.org/10.1111/apha.12440 Lozano-Ojalvo D, López-Fandiño R, López-Expósito I (2015) PBMC-derived T cells. In: Verhoeckx K, Cotter P, López-Expósito I (eds) The impact of food bioactives on health: in vitro and ex vivo models. Springer International Publishing, Cham, pp 169–180. https://doi.org/10.1007/978-3-319-16104-4_16 Tian J, Chau C, Hales TG, Kaufman DL (1999) GABA (A) receptors mediate inhibition of T cell responses. J Neuroimmunol 96(1):21–28 (S0165-5728(98)00264-1[pii]) Prud’homme GJ, Glinka Y, Hasilo C, Paraskevas S, Li X, Wang Q (2013) GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. Transplantation 96(7):616–623. https://doi.org/10.1097/TP.0b013e31829c24be Bjurstom H, Wang J, Ericsson I, Bengtsson M, Liu Y, Kumar-Mendu S, Issazadeh-Navikas S, Birnir B (2008) GABA, a natural immunomodulator of T lymphocytes. J Neuroimmunol 205(1–2):44–50. https://doi.org/10.1016/j.jneuroim.2008.08.017 Wei M, Li L, Meng R, Fan Y, Liu Y, Tao L, Liu X, Wu C (2010) Suppressive effect of diazepam on IFN-gamma production by human T cells. Int Immunopharmacol 10(3):267–271. https://doi.org/10.1016/j.intimp.2009.11.009 Soltani N, Qiu H, Aleksic M, Glinka Y, Zhao F, Liu R, Li Y, Zhang N, Chakrabarti R, Ng T, Jin T, Zhang H, Lu WY, Feng ZP, Prud’homme GJ, Wang Q (2011) GABA exerts protective and regenerative effects on islet beta cells and reverses diabetes. Proc Natl Acad Sci U S A 108(28):11692–11697. https://doi.org/10.1073/pnas.1102715108 Tian J, Lu Y, Zhang H, Chau CH, Dang HN, Kaufman DL (2004) Gamma-aminobutyric acid inhibits T cell autoimmunity and the development of inflammatory responses in a mouse type 1 diabetes model. J Immunol 173(8):5298–5304. https://doi.org/10.4049/jimmunol.173.8.5298 Tian J, Dang H, Nguyen AV, Chen Z, Kaufman DL (2014) Combined therapy with GABA and proinsulin/alum acts synergistically to restore long-term normoglycemia by modulating T-cell autoimmunity and promoting beta-cell replication in newly diabetic NOD mice. Diabetes 63(9):3128–3134. https://doi.org/10.2337/db13-1385 Demakova EV, Korobov VP, Lemkina LM (2003) Determination of gamma-aminobutyric acid concentration and activity of glutamate decarboxylase in blood serum of patients with multiple sclerosis. Klin Lab Diagn 4:15–17 Tian J, Yong J, Dang H, Kaufman DL (2011) Oral GABA treatment downregulates inflammatory responses in a mouse model of rheumatoid arthritis. Autoimmunity 44(6):465–470. https://doi.org/10.3109/08916934.2011.571223 Nigam R, El-Nour H, Amatya B, Nordlind K (2010) GABA and GABA (A) receptor expression on immune cells in psoriasis: a pathophysiological role. Arch Dermatol Res 302(7):507–515. https://doi.org/10.1007/s00403-010-1052-5 Bhandage AK, Jin Z, Korol SV, Tafreshiha AS, Gohel P, Hellgren C, Espes D, Carlsson PO, Sundstrom-Poromaa I, Birnir B (2018) Expression of calcium release-activated and voltage-gated calcium channels genes in peripheral blood mononuclear cells is altered in pregnancy and in type 1 diabetes. PLoS ONE 13(12):e0208981. https://doi.org/10.1371/journal.pone.0208981 Omilusik K, Priatel JJ, Chen X, Wang YT, Xu H, Choi KB, Gopaul R, McIntyre-Smith A, Teh HS, Tan R, Bech-Hansen NT, Waterfield D, Fedida D, Hunt SV, Jefferies WA (2011) The Ca(v)1.4 calcium channel is a critical regulator of T cell receptor signaling and naive T cell homeostasis. Immunity 35(3):349–360. https://doi.org/10.1016/j.immuni.2011.07.011 Jha MK, Badou A, Meissner M, McRory JE, Freichel M, Flockerzi V, Flavell RA (2009) Defective survival of naive CD8+ T lymphocytes in the absence of the beta3 regulatory subunit of voltage-gated calcium channels. Nat Immunol 10(12):1275–1282. https://doi.org/10.1038/ni.1793 Fenninger F, Han J, Stanwood SR, Nohara LL, Arora H, Choi KB, Munro L, Pfeifer CG, Shanina I, Horwitz MS, Jefferies WA (2019) Mutation of an L-type calcium channel gene leads to T lymphocyte dysfunction. Front Immunol 10:2473. https://doi.org/10.3389/fimmu.2019.02473 Matza D, Badou A, Kobayashi KS, Goldsmith-Pestana K, Masuda Y, Komuro A, McMahon-Pratt D, Marchesi VT, Flavell RA (2008) A scaffold protein, AHNAK1, is required for calcium signaling during T cell activation. Immunity 28(1):64–74. https://doi.org/10.1016/j.immuni.2007.11.020 Matza D, Badou A, Klemic KG, Stein J, Govindarajulu U, Nadler MJ, Kinet JP, Peled A, Shapira OM, Kaczmarek LK, Flavell RA (2016) T cell receptor mediated calcium entry requires alternatively spliced Cav1.1 channels. PLoS ONE 11(1):e0147379. https://doi.org/10.1371/journal.pone.0147379 Cabral MD, Paulet PE, Robert V, Gomes B, Renoud ML, Savignac M, Leclerc C, Moreau M, Lair D, Langelot M, Magnan A, Yssel H, Mariame B, Guery JC, Pelletier L (2010) Knocking down Cav1 calcium channels implicated in Th2 cell activation prevents experimental asthma. Am J Respir Crit Care Med 181(12):1310–1317. https://doi.org/10.1164/rccm.200907-1166OC Wang H, Zhang X, Xue L, Xing J, Jouvin MH, Putney JW, Anderson MP, Trebak M, Kinet JP (2016) Low-voltage-activated Ca3.1 calcium channels shape T helper cell cytokine profiles. Immunity. https://doi.org/10.1016/j.immuni.2016.01.015 Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231(1):59–87. https://doi.org/10.1111/j.1600-065X.2009.00816.x Wang Y, Deng X, Mancarella S, Hendron E, Eguchi S, Soboloff J, Tang XD, Gill DL (2010) The calcium store sensor, STIM1, reciprocally controls orai and CaV1.2 channels. Science 330(6000):105–109. https://doi.org/10.1126/science.1191086 Park CY, Shcheglovitov A, Dolmetsch R (2010) The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels. Science 330(6000):101–105. https://doi.org/10.1126/science.1191027 Narayanan R, Dougherty KJ, Johnston D (2010) Calcium store depletion induces persistent perisomatic increases in the functional density of h channels in hippocampal pyramidal neurons. Neuron 68(5):921–935. https://doi.org/10.1016/j.neuron.2010.11.033 Badou A, Jha MK, Matza D, Mehal WZ, Freichel M, Flockerzi V, Flavell RA (2006) Critical role for the beta regulatory subunits of Cav channels in T lymphocyte function. Proc Natl Acad Sci USA 103(42):15529–15534. https://doi.org/10.1073/pnas.0607262103 Badou A, Jha MK, Matza D, Flavell RA (2013) Emerging roles of L-type voltage-gated and other calcium channels in T lymphocytes. Front Immunol 4:243. https://doi.org/10.3389/fimmu.2013.00243 Kadri N, Wagner AK, Ganesan S, Karre K, Wickstrom S, Johansson MH, Hoglund P (2016) Dynamic regulation of NK cell responsiveness. Curr Top Microbiol Immunol 395:95–114. https://doi.org/10.1007/82_2015_485 Takanaga H, Ohtsuki S, Hosoya K, Terasaki T (2001) GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J Cereb Blood Flow Metab 21(10):1232–1239. https://doi.org/10.1097/00004647-200110000-00012 Bergeret M, Khrestchatisky M, Tremblay E, Bernard A, Gregoire A, Chany C (1998) GABA modulates cytotoxicity of immunocompetent cells expressing GABAA receptor subunits. Biomed Pharmacother 52(5):214–219. https://doi.org/10.1016/S0753-3322(98)80019-X Lang K, Drell TL, Niggemann B, Zanker KS, Entschladen F (2003) Neurotransmitters regulate the migration and cytotoxicity in natural killer cells. Immunol Lett 90(2–3):165–172. https://doi.org/10.1016/j.imlet.2003.09.004 Koga Y, Tsurumaki H, Aoki-Saito H, Sato M, Yatomi M, Takehara K, Hisada T (2019) Roles of cyclic AMP response element binding activation in the ERK1/2 and p38 MAPK signalling pathway in central nervous system, cardiovascular system, osteoclast differentiation and mucin and cytokine production. Int J Mol Sci. https://doi.org/10.3390/ijms20061346 Barati MT, Scherzer J, Wu R, Rane MJ, Klein JB (2015) Cytoskeletal rearrangement and Src and PI-3K-dependent Akt activation control GABA(B)R-mediated chemotaxis. Cell Signal 27(6):1178–1185. https://doi.org/10.1016/j.cellsig.2015.02.022 Bassi GS, Malvar D do C, Cunha TM, Cunha FQ, Kanashiro A (2016) Spinal GABA-B receptor modulates neutrophil recruitment to the knee joint in zymosan-induced arthritis. Naunyn Schmiedebergs Arch Pharmacol 389(8):851–861. https://doi.org/10.1007/s00210-016-1248-0 Yocum GT, Turner DL, Danielsson J, Barajas MB, Zhang Y, Xu D, Harrison NL, Homanics GE, Farber DL, Emala CW (2017) GABAA receptor alpha4-subunit knockout enhances lung inflammation and airway reactivity in a murine asthma model. Am J Physiol Lung Cell Mol Physiol 313(2):L406–L415. https://doi.org/10.1152/ajplung.00107.2017 Forkuo GS, Nieman AN, Yuan NY, Kodali R, Yu OB, Zahn NM, Jahan R, Li G, Stephen MR, Guthrie ML, Poe MM, Hartzler BD, Harris TW, Yocum GT, Emala CW, Steeber DA, Stafford DC, Cook JM, Arnold LA (2017) Alleviation of multiple asthmatic pathologic features with orally available and subtype selective GABAA receptor modulators. Mol Pharm 14(6):2088–2098. https://doi.org/10.1021/acs.molpharmaceut.7b00183 Dustin ML (2014) The immunological synapse. Cancer Immunol Res 2(11):1023–1033. https://doi.org/10.1158/2326-6066.CIR-14-0161 Tan JK, McKenzie C, Marino E, Macia L, Mackay CR (2017) Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu Rev Immunol 35:371–402. https://doi.org/10.1146/annurev-immunol-051116-052235 Smits A, Jin Z, Elsir T, Pedder H, Nister M, Alafuzoff I, Dimberg A, Edqvist PH, Ponten F, Aronica E, Birnir B (2012) GABA-A channel subunit expression in human glioma correlates with tumor histology and clinical outcome. PLoS ONE 7(5):e37041. https://doi.org/10.1371/journal.pone.0037041 Chavan SS, Pavlov VA, Tracey KJ (2017) Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 46(6):927–942. https://doi.org/10.1016/j.immuni.2017.06.008