An isogeometric collocation method using superconvergent points

Computer Methods in Applied Mechanics and Engineering - Tập 284 - Trang 1073-1097 - 2015
Cosmin Anitescu1, Yue Jia1, Yongjie Jessica Zhang2, Timon Rabczuk1,3
1Institute of Structural Mechanics, Bauhaus-Universität Weimar, Germany
2Department of Mechanical Engineering, Carnegie Mellon University, USA
3School of Civil, Environmental and Architectural Engineering, Korea University, Republic of Korea

Tài liệu tham khảo

Cottrell, 2009 Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008 Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006 Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027 Evans, 2009, n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 1726, 10.1016/j.cma.2009.01.021 Benson, 2010, Isogeometric shell analysis: the Reissner–Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276, 10.1016/j.cma.2009.05.011 Benson, 2013, Blended isgoeometric shells, Comput. Methods Appl. Mech. Engrg., 255, 133, 10.1016/j.cma.2012.11.020 Valizadeh, 2013, NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter, Compos. Struct., 99, 309, 10.1016/j.compstruct.2012.11.008 Bazilevs, 2012, Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg., 249–252, 28, 10.1016/j.cma.2012.03.028 Bazilevs, 2008, Isogeometric fluid–structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016 Buffa, 2010, Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 1143, 10.1016/j.cma.2009.12.002 Schillinger, 2014, Reduced Bezier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1, 10.1016/j.cma.2014.04.008 Hughes, 2000 Cools, 1993, Monomial cubature rules since “Stroud”: a compilation, J. Comput. Appl. Math., 48, 309, 10.1016/0377-0427(93)90027-9 Cools, 1999, Monomial cubature rules since “Stroud”: a compilation—part 2, J. Comput. Appl. Math., 112, 21, 10.1016/S0377-0427(99)00229-0 Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004 Auricchio, 2012, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249–252, 15, 10.1016/j.cma.2012.04.014 Auricchio, 2010, Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878 Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249–252, 2, 10.1016/j.cma.2012.03.026 da Veiga, 2012, Avoiding shear locking for the Timonshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020 Schillinger, 2013, Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017 Lin, 2013, Consistency and convergence properties of the isogeometric collocation method, Comput. Methods Appl. Mech. Engrg., 267, 471, 10.1016/j.cma.2013.09.025 de Boor, 1973, Collocation at Gaussian points, SIAM J. Numer. Anal., 10, 582, 10.1137/0710052 de Boor, 2001, A Practical Guide to Splines Piegl, 1997 Farin, 1999 Zienkiewicz, 1992, The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique, Internat. J. Numer. Methods Engrg., 33, 1331, 10.1002/nme.1620330702 Babuška, 1996, Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations, Numer. Methods Partial Differential Equations, 12, 347, 10.1002/num.1690120303 Babuška, 2007, Superconvergence in the generalized finite element method, Numer. Math., 107, 353, 10.1007/s00211-007-0096-8 Barrett, 1994 Paige, 1982, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., 8, 43, 10.1145/355984.355989 Zhang, 2001, Least-squares collocation meshless method, Internat. J. Numer. Methods Engrg., 51, 1089, 10.1002/nme.200 De Lorenzis, 2015, Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21, 10.1016/j.cma.2014.06.037 Gould, 1999 Golub, 1996 Collier, 2012, The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Engrg., 213–216, 353, 10.1016/j.cma.2011.11.002 Donatelli, 2015, Robust and optimal multi-iterative techniques for IgA Galerkin linear systems, Comput. Methods Appl. Mech. Engrg., 284, 230, 10.1016/j.cma.2014.06.001 da Veiga, 2014, Overlapping Schwarz preconditioners for isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 278, 239, 10.1016/j.cma.2014.05.007