An isogeometric collocation method using superconvergent points
Tài liệu tham khảo
Cottrell, 2009
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027
Evans, 2009, n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 1726, 10.1016/j.cma.2009.01.021
Benson, 2010, Isogeometric shell analysis: the Reissner–Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276, 10.1016/j.cma.2009.05.011
Benson, 2013, Blended isgoeometric shells, Comput. Methods Appl. Mech. Engrg., 255, 133, 10.1016/j.cma.2012.11.020
Valizadeh, 2013, NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and flutter, Compos. Struct., 99, 309, 10.1016/j.compstruct.2012.11.008
Bazilevs, 2012, Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg., 249–252, 28, 10.1016/j.cma.2012.03.028
Bazilevs, 2008, Isogeometric fluid–structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x
Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016
Buffa, 2010, Isogeometric analysis in electromagnetics: B-splines approximation, Comput. Methods Appl. Mech. Engrg., 199, 1143, 10.1016/j.cma.2009.12.002
Schillinger, 2014, Reduced Bezier element quadrature rules for quadratic and cubic splines in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 277, 1, 10.1016/j.cma.2014.04.008
Hughes, 2000
Cools, 1993, Monomial cubature rules since “Stroud”: a compilation, J. Comput. Appl. Math., 48, 309, 10.1016/0377-0427(93)90027-9
Cools, 1999, Monomial cubature rules since “Stroud”: a compilation—part 2, J. Comput. Appl. Math., 112, 21, 10.1016/S0377-0427(99)00229-0
Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004
Auricchio, 2012, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249–252, 15, 10.1016/j.cma.2012.04.014
Auricchio, 2010, Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878
Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249–252, 2, 10.1016/j.cma.2012.03.026
da Veiga, 2012, Avoiding shear locking for the Timonshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020
Schillinger, 2013, Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170, 10.1016/j.cma.2013.07.017
Lin, 2013, Consistency and convergence properties of the isogeometric collocation method, Comput. Methods Appl. Mech. Engrg., 267, 471, 10.1016/j.cma.2013.09.025
de Boor, 1973, Collocation at Gaussian points, SIAM J. Numer. Anal., 10, 582, 10.1137/0710052
de Boor, 2001, A Practical Guide to Splines
Piegl, 1997
Farin, 1999
Zienkiewicz, 1992, The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique, Internat. J. Numer. Methods Engrg., 33, 1331, 10.1002/nme.1620330702
Babuška, 1996, Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations, Numer. Methods Partial Differential Equations, 12, 347, 10.1002/num.1690120303
Babuška, 2007, Superconvergence in the generalized finite element method, Numer. Math., 107, 353, 10.1007/s00211-007-0096-8
Barrett, 1994
Paige, 1982, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., 8, 43, 10.1145/355984.355989
Zhang, 2001, Least-squares collocation meshless method, Internat. J. Numer. Methods Engrg., 51, 1089, 10.1002/nme.200
De Lorenzis, 2015, Isogeometric collocation: Neumann boundary conditions and contact, Comput. Methods Appl. Mech. Engrg., 284, 21, 10.1016/j.cma.2014.06.037
Gould, 1999
Golub, 1996
Collier, 2012, The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Engrg., 213–216, 353, 10.1016/j.cma.2011.11.002
Donatelli, 2015, Robust and optimal multi-iterative techniques for IgA Galerkin linear systems, Comput. Methods Appl. Mech. Engrg., 284, 230, 10.1016/j.cma.2014.06.001
da Veiga, 2014, Overlapping Schwarz preconditioners for isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 278, 239, 10.1016/j.cma.2014.05.007