Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica

Daniel W. Udwary1, Lisa Zeigler1, Ratnakar N. Asolkar1, Vasanth Singan2, Alla Lapidus2, William Fenical1, Paul R. Jensen1, Bradley S. Moore1,3
1*Scripps Institution of Oceanography and
2Department of Energy, Joint Genome Institute–Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598
3Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0204; and

Tóm tắt

Recent fermentation studies have identified actinomycetes of the marine-dwelling genus Salinispora as prolific natural product producers. To further evaluate their biosynthetic potential, we sequenced the 5,183,331-bp S. tropica CNB-440 circular genome and analyzed all identifiable secondary natural product gene clusters. Our analysis shows that S. tropica dedicates a large percentage of its genome (≈9.9%) to natural product assembly, which is greater than previous Streptomyces genome sequences as well as other natural product-producing actinomycetes. The S. tropica genome features polyketide synthase systems of every known formally classified family, nonribosomal peptide synthetases, and several hybrid clusters. Although a few clusters appear to encode molecules previously identified in Streptomyces species, the majority of the 17 biosynthetic loci are novel. Specific chemical information about putative and observed natural product molecules is presented and discussed. In addition, our bioinformatic analysis not only was critical for the structure elucidation of the polyene macrolactam salinilactam A, but its structural analysis aided the genome assembly of the highly repetitive slm loci. This study firmly establishes the genus Salinispora as a rich source of drug-like molecules and importantly reveals the powerful interplay between genomic analysis and traditional natural product isolation studies.

Từ khóa


Tài liệu tham khảo

10.1038/ja.2005.1

10.1038/417141a

10.1073/pnas.211433198

10.1038/nchembio731

10.1021/ja065247w

10.1016/j.chembiol.2005.10.008

10.1016/j.chembiol.2006.11.007

10.1038/nbt784

10.1021/np0401664

10.1021/cr0503097

10.1007/BF01569737

10.1039/a909079g

10.1038/nchembio841

10.1099/ijs.0.63625-0

10.1111/j.1462-2920.2006.01093.x

10.1128/AEM.01891-06

10.1002/ange.200390083

10.1021/ol050901i

10.7164/antibiotics.50.543

10.1038/31159

10.1073/pnas.0406410101

10.1073/pnas.0607048103

10.1073/pnas.211433198

10.1016/S1074-5521(96)90181-7

10.1016/S1074-5521(98)90115-6

10.2174/0929867033456701

10.1021/ol052686b

10.1021/ja070023e

10.1016/S1074-5521(99)80082-9

10.1016/S1074-5521(00)00091-0

10.1021/ja045774k

10.1128/MMBR.66.2.223-249.2002

10.1016/j.chembiol.2003.12.010

10.1073/pnas.0603148103

10.1016/j.chembiol.2005.08.017

10.1038/nature03194

10.1021/cr0503097

10.1093/molbev/msl108

L Hauser, F Larimer, M Land, M Shah, E Uberbacher Gen Engineer 26, 225–238 (2004).

10.1093/oxfordjournals.molbev.a026133

10.1093/nar/27.23.4636

10.1093/nar/29.1.41

10.1093/nar/gkg847

10.1093/nar/30.1.276

10.1093/nar/gkj079

10.1093/nar/28.1.33

10.1093/nar/gkg095

10.1093/nar/gkh063

10.1093/nar/gkj024