Supercritical Carbon Dioxide Antisolvent Fractionation for the Sustainable Concentration of Lavandula luisieri (Rozeira) Riv.- Mart Antimicrobial and Antioxidant Compounds and Comparison with Its Conventional Extracts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Friedman, 2015, Antibiotic-resistant bacteria: Prevalence in food and inactivation by food-compatible compounds and plant extracts, J. Agric. Food Chem., 63, 3805, 10.1021/acs.jafc.5b00778
Domingo, 2003, Plants with antimicrobial action, Rev. Esp. Quim. Publ. Soc. Esp. Quim., 16, 385
Harvey, 1999, Medicines from nature: Are natural products still relevant to drug discovery?, Trends Pharm. Sci., 20, 196, 10.1016/S0165-6147(99)01346-2
Kalim, M.D., Bhattacharyya, D., Banerjee, A., and Chattopadhyay, S. (2010). Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complementary Altern. Med., 10.
Gyawali, 2014, Natural products as antimicrobial agents, Food Control, 46, 412, 10.1016/j.foodcont.2014.05.047
Baldovini, 2005, Necrodane monoterpenoids from Lavandula luisieri, Phytochemistry, 66, 1651, 10.1016/j.phytochem.2005.04.040
Mohamed, 2006, Antifeedant effects and chemical composition of essential oils from different populations of Lavandula luisieri L., Biochem. Syst. Ecol., 34, 609, 10.1016/j.bse.2006.02.006
Julio, 2014, Comparative chemistry and insect antifeedant effects of conventional (Clevenger and Soxhlet) and supercritical extracts (CO2) of two Lavandula luisieri populations, Ind. Crop. Prod., 58, 25, 10.1016/j.indcrop.2014.03.021
Sanz, 2004, Analysis of volatile components of Lavandula luisieri L. by direct thermal desorption–gas chromatography–mass spectrometry, J. Chromatogr. A, 1024, 139, 10.1016/j.chroma.2003.10.024
Roach, 1990, Defense mechanisms of arthropods. 83 α- and β-Necrodol, novel terpenes from a carrion beetle (Necrodes surinamensis, Silphidae, Coleoptera), J. Org. Chem., 55, 4047, 10.1021/jo00300a020
Matos, 2009, Antioxidant Capacity of the Essential Oils from Lavandula luisieri L. stoechas subsp. lusitanica, L. stoechas subsp. lusitanica × L. luisieri and L. viridis Grown in Algarve (Portugal), J. Essent. Oil Res., 21, 327, 10.1080/10412905.2009.9700184
Baptista, 2015, Antioxidant and Antimycotic Activities of Two Native Lavandula Species from Portugal, Evid. Based Complement. Altern. Med., 2015, 570521, 10.1155/2015/570521
Arantes, 2016, Pharmacological and Toxicological Studies of Essential Oil of Lavandula stoechas subsp. luisieri, Planta Med., 82, 1266, 10.1055/s-0042-104418
Dias, 2017, Oxygenated monoterpenes-rich volatile oils as potential antifungal agents for dermatophytes, Nat. Prod. Res., 31, 460, 10.1080/14786419.2016.1195379
Lai, 2012, Evaluation of the antimicrobial activity in species of a Portuguese Montado ecosystem against multidrug resistant pathogens, J. Med. Plants Res., 6, 2381
Roller, 2009, The antimicrobial activity of high-necrodane and other lavender oils on methicillin-sensitive and -resistant Staphylococcus aureus (MSSA and MRSA), J. Altern. Complement. Med., 15, 275, 10.1089/acm.2008.0268
Zuzarte, 2012, Lavandula luisieri essential oil as a source of antifungal drugs, Food Chem., 135, 1505, 10.1016/j.foodchem.2012.05.090
Julio, 2017, Ixodicidal compounds from pre-domesticated Lavandula luisieri, Ind. Crop. Prod., 110, 83, 10.1016/j.indcrop.2017.06.044
Costa, 2018, In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components, Exp. Parasitol., 190, 34, 10.1016/j.exppara.2018.05.002
Rufino, 2015, Differential effects of the essential oils of Lavandula luisieri and Eryngium duriaei subsp. juresianum in cell models of two chronic inflammatory diseases, Pharm. Boil., 53, 1220, 10.3109/13880209.2014.970701
Nunes, 2017, Antibacterial, antioxidant and anti-proliferative properties and zinc content of five south Portugal herbs, Pharm. Biol., 55, 114, 10.1080/13880209.2016.1230636
Wolska, 2010, Antibacterial activity of oleanolic and ursolic acids and their derivatives, Cent. Eur. J. Biol., 5, 543
Jesus, 2015, Antimicrobial Activity of Oleanolic and Ursolic Acids: An Update, Evid. Based Complement. Altern. Med., 2015, 620472, 10.1155/2015/620472
Silvestre, 2014, Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology, J. Supercrit. Fluids, 92, 115, 10.1016/j.supflu.2014.04.007
Meneses, 2015, Antioxidant phenolic compounds recovery from Mangifera indica L. by-products by supercritical antisolvent extraction, J. Food Eng., 163, 45, 10.1016/j.jfoodeng.2015.04.025
Burt, 2004, Essential oils: Their antibacterial properties and potential applications in foods—A review, Int. J. Food Microbiol., 94, 223, 10.1016/j.ijfoodmicro.2004.03.022
Parhi, 2013, Supercritical Fluid Technology: A Review, J. Adv. Pharm. Sci. Technol., 1, 13, 10.14302/issn.2328-0182.japst-12-145
Reverchon, 2006, Supercritical fluid extraction and fractionation of natural matter, J. Supercrit. Fluids, 38, 146, 10.1016/j.supflu.2006.03.020
Martin, 2011, Supercritical antisolvent fractionation of ryanodol from Persea indica, J. Supercrit. Fluids, 60, 16, 10.1016/j.supflu.2011.03.012
Perretti, 2013, Supercritical antisolvent fractionation of lignans from the ethanol extract of flaxseed, J. Supercrit. Fluids, 75, 94, 10.1016/j.supflu.2012.12.028
Mendiola, 2016, Supercritical antisolvent fractionation of rosemary extracts obtained by pressurized liquid extraction to enhance their antiproliferative activity, J. Supercrit. Fluids, 107, 581, 10.1016/j.supflu.2015.07.019
Visentin, 2012, Precipitation and encapsulation of rosemary antioxidants by supercritical antisolvent process, J. Food Eng., 109, 9, 10.1016/j.jfoodeng.2011.10.015
Julio, 2016, Phytotoxic and Nematicidal Components of Lavandula luisieri, J. Nat. Prod., 79, 261, 10.1021/acs.jnatprod.5b00501
Rota, 2008, Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils, Food Control, 19, 681, 10.1016/j.foodcont.2007.07.007
Radnovic, 2014, Chemical composition, antimicrobial, antioxidative and anticholinesterase activity of Satureja Montana L. ssp montana essential oil, Open Life Sci., 9, 668, 10.2478/s11535-014-0298-x
Tekwu, 2012, Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance, J. Ethnopharmacol., 142, 265, 10.1016/j.jep.2012.05.005
Basch, 1968, In vitro antimicrobial activity of dimethylsulfoxide, Appl. Microbiol., 16, 1953, 10.1128/am.16.12.1953-1954.1968
Cuvelier, 1995, Use of a free radical method to evaluate antioxidant activity, LWT Food Sci. Technol., 28, 25, 10.1016/S0023-6438(95)80008-5
Bernatoniene, 2016, Novel approaches to optimize extraction processes of ursolic, oleanolic and rosmarinic acids from Rosmarinus officinalis leaves, Ind. Crop. Prod., 84, 72, 10.1016/j.indcrop.2016.01.031
Rota, 2004, In vitro antimicrobial activity of essential oils from aromatic plants against selected foodborne pathogens, J. Food Prot., 67, 1252, 10.4315/0362-028X-67.6.1252
Cabo, 1996, Characterisation of the Essential Oils of some Cultivated Aromatic Plants of Industrial Interest, J. Sci. Food Agric., 70, 359, 10.1002/(SICI)1097-0010(199603)70:3<359::AID-JSFA512>3.0.CO;2-0
Delgado, 2011, Chemical and biological profiles of Lavandula luisieri essential oils from western Iberia Peninsula populations, Biochem. Syst. Ecol., 39, 1, 10.1016/j.bse.2010.08.010
Marin, 2010, Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model, Molecules, 15, 7532, 10.3390/molecules15117532
Moreno, 2006, Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition, Free Radic. Res., 40, 223, 10.1080/10715760500473834
Bais, 2002, Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum, Plant Physiol. Biochem., 40, 983, 10.1016/S0981-9428(02)01460-2
Lewis, 2006, Prospects for plant-derived antibacterials, Nat. Biotechnol., 24, 1504, 10.1038/nbt1206-1504
Lemos, 2014, Antibacterial and Antioxidant Activities of Ursolic Acid and Derivatives, Molecules, 19, 1317, 10.3390/molecules19011317
Messaoud, 2012, Chemical composition and antioxidant activities of essential oils and methanol extracts of three wild Lavandula L. species, Nat. Prod. Res., 26, 1976, 10.1080/14786419.2011.635343
Brantner, 2010, Evaluation of Antioxidant Potential of Lavandula x intermedia Emeric ex Loisel. ‘Budrovka’: A Comparative Study with L. angustifolia Mill, Molecules, 15, 5971, 10.3390/molecules15095971
Jauregui, 2007, Antioxidant Activity and Phenolic Composition of Lavandin (Lavandula x intermedia Emeric ex Loiseleur) Waste, J. Agric. Food Chem., 55, 8436, 10.1021/jf070236n
Ceylan, 2015, Evaluation of Antioxidant Activity, Phytochemicals and ESR Analysis of Lavandula Stoechas, Acta Phys. Pol. A, 128, 483, 10.12693/APhysPolA.128.B-483
Apak, 2006, The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas, Int. J. Food Sci. Nutr., 57, 292, 10.1080/09637480600798132
Carrasco, 2016, Lavandula angustifolia and Lavandula latifolia Essential Oils from Spain: Aromatic Profile and Bioactivities, Planta Med., 82, 163