Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere

Science China Press., Co. Ltd. - Tập 49 - Trang 381-388 - 2004
Jianwen Zou1, Yao Huang1,2, Xunhua Zheng2, Yuesi Wang2, Yuquan Chen3
1College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
2Institute of Atmospheric Physics, Beijing, China
3Agricultural Resource and Environment Research Center, Jiangsu Academy of Agricultural Sciences, Nanjing, China

Tóm tắt

Terrestrial carbon cycling is one of the hotspots in global change issues. In this paper, we presented the rationale for determination of net exchange of CO2 between terrestrial and the atmosphere (NEE) and the methods for measuring several relevant components. Three key processes for determination of NEE were addressed, including the separation of shoot autotrophic respiration from total CO2 emissions of the ecosystem, the partition of root respiration from soil CO2 efflux, and the quantification of rhizodeposition C from NPP. With an understanding of the processes involved in the CO2 exchange between terrestrial and the atmosphere, we estimated NEE of rice ecosystem in Nanjing based on field measurements of CO2 emissions and several relevant biotic components as well as abiotic factors. The field measurements of CO2 emissions were made over the rice-growing seasons in 2001 and 2002 with the static opaque chamber method. Calculations indicated that the seasonal pattern of NEE is comparable for two seasons. Either net carbon emission or fractional carbon fixation occurred during 3 weeks after rice transplanting and thereafter net carbon fixation appeared with an increasing trend as rice growing. Higher net carbon fixation occurred in the rice developmental period from elongating to heading. A decline trend in the fixation was documented after rice heading. The mean daily NEE was -6.06 gC·m−2 in 2001 season and -7.95 gC·m−2 in 2002 season, respectively. These values were comparable to the results obtained by Campbell et al. who made field measurements with the Bowen ratio-energy balance technique in irrigated rice, Texas USA. Moreover, the mean daily NEE in this study was also comparable to the values obtained from a Japanese rice paddy with the eddy covariance method under the similar water regime, either drainage course or waterlogged. It is concluded that NEE determined by the static opaque chamber method is comparable and in agreement with those measured by Bowen ratioenergy balance and eddy covariance methods.

Tài liệu tham khảo

IPCC, Atmospheric Chemistry and Greenhouse Gases (eds. Houghton, J. T., Ding, Y., Griggs, D. J. et al.), Climate Change 2001: the Scientific Basis, Cambridge: Cambridge University Press, 2001, 183–238. Chen, Y. Y., Global change and social sustainable development, Advance in Earth Sciences (in Chinese), 2003, 18(1): 1–3. Huang, Y., Study on carbon budget in terrestrial and marginal sea ecosystems of China, Bulletin of the Chinese Academy of Sciences (in Chinese with English abstract), 2002, 17(2): 104–107. Wang, Y. S., Ji, B. M., Wang, Y. F. et al., Measurements of exchange rates of greenhouse gases between soil and atmosphere in semiarid grasslands, Environmental Sciences (in Chinese with English abstract), 2000, 21(3): 6–10. Dong, Y. S., Zhang, S., Qi, Y. C. et al., Fluxes of CO2, N2O and CH4 from a typical temperature grassland in inner Mongolia and its daily variation, Chinese Science Bulletin, 2000, 45(17): 1590–1594. Zou, J. W., Jiao, Y., Wang, Y. S. et al., GC-based technique for determination of CO2, CH4 and N2O emissions from rice paddy, Journal of Nanjing Agricultural University (in Chinese with English abstract), 2002, 25(4): 45–48. IGBP, The terrestrial biosphere and global change: Implication for nature and managed ecosystems, A Synthesis of GCTE and Related Research, 1997, 1–32. Zhu, Z. H., Model for estimation of net primary production (NPP) of natural vegetation, Chinese Science Bulletin (in Chinese), 1993, 38(15): 1422–1426. Zhou, G. S., Zhang, X. S., Study on NPP of natural vegetation in China under global climate change, Acta Phytoecologica Sinica (in Chinese with English abstract), 1996, 20(1): 11–19. Huang, Y., Gao, L. Z., Jin, Z. Q. et al., Simulating the optimal growing season of rice in the Yangtze River valley and its adjacent area, China, Agricultural and Forest Meteorology, 1998, 91: 251–262. Domanski, G., Kuzyakov, Y., Siniakina, S. et al., Carbon fluxes in the rhizosphere ofLolium preenne, Journal of Plant Nutrition and Soil Science, 2001, 164: 381–387. Coombes, J., Hall, D., Long, S. et al., Biological Production and Plant Photosynthesis Measurements Technique (in Chinese), Beijing: Science Press, 1986, 78–96. Wang, Z., Gao, Y. Z., Study on relationship between photorespiration Zou, J. W., Huang, Y., Zong, L. G. et al., Field study on CO2, CH4 and N2O emissions from rice paddy and impact factors, Acta Scientiae Circumstantiae (in Chinese with English abstract), 2003, 23: 758–764. Zheng, X. H., Xu, Z. J., Wang, Y. S. et al., Determination of net exchange of CO2 between paddy fields and atmosphere with static opaque chamber-based measurements, Chinese Journal of Applied Ecology (in Chinese with English abstract), 2002, 13(10): 1240–1244. Pan, R. Z., Dong, Y. D., Plant Physiology, 2nd ed. (in Chinese), Beijing: Higher Education Press, 1995, 246–253. Salisbury, F., Ross, C., Plant Physiology (in Chinese), Beijing: Science Press, 1979, 87–96. Penning de Vries, F., van Laar, H., Chardon, M., Bioenergetics of growth of seeds, fruits, and storage organs. In Potential productivity of field crops under different environments, IRRI, Los Banos, Phillipines, 1983, 37–59. Singh, J., Gupta, W., Plant decomposition and soil respiration in terrestrial ecosystems, Bot. Rev., 1977, 43: 449–529. Van der Werf, A., Kooijman, A., Welschen, R., Respiratory energy costs for the maintenance of biomass, for growth and for ion uptake in roots of carex diandra and carex acutiformis, Physiol. Plant, 1988, 72: 483–491. Bouma, T., Broekhuysen, A., Veen, B., Analysis of root respiration of solanum tuberosum as related to growth, ion uptake and maintenance biomass, Plant Physiol. Biochem., 1996, 34: 795–806. Fang, C., Moncrieff, J., An improved chamber technique for measuring CO2 efflux from the surface soil, Funct. Ecol., 1996, 10: 297–305. Epron, D., Farque, L., Lucot, E. et al., Soil CO2 efflux in a beech forest: The contribution of root respiration, Ann. For. Sci., 1999, 56: 289–295. Högberg, P., Nordgren, A., Buchman, N. et al., Large-scale forest gridling shows that current photosynthesis drives soil respiration, Nature, 2001, 411: 789–792. Chen, S. Q., Chui, X. Y., Zhou, G. S. et al., Study on the CO2 release rate of soil respiration and litter decomposition in Stipa grandis Steppe in Xilin River Basin, Inner Mongolia, Acta Botanica Sinica (in Chinese), 1999, 41(6): 645–650. Huang, Y., Liu, S. L., Shen, Q. R. et al., Model establishment for simulating soil organic carbon dynamics, Agricultural Sciences in China, 2002, 1(3): 307–312. Huang, Y., Liu, S. L., Shen, Q. R. et al., Influence of environmental factors on the decomposition of organic carbon in agricultural soils, Chinese Journal of Applied Ecology (in Chinese with English abstract), 2002, 13(6): 709–714. Wang, W., Guo, J. X., Contribution of CO2 emission from soil respiration and from litter decomposition inLymus chinensis Community in northeast Songnen grassland, Acta Ecologica Sinica (in Chinese with English abstract), 2002, 22(5): 655–660. Kelting, D., Burger, J., Edwards, G., Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils, Soil Biol. Biochem., 1998, 30(7): 961–968. Kuzyakov, Y., Separating microbial respiration of exudates from root respiration in non-sterile soils: a comparison of four methods, Soil Biol. Biochem., 2002, 34: 1621–1631. Kuzyakov, Y., Kretzschmar, A., Stahr, K., Contribution ofLolium perenne rhizodeposition to carbon turnover of pasture soil, Plant and Soil, 1999, 213: 127–136. Campbell, C., HeiIman, J., McInnes, K. et al., Diel and seasonal variation in CO2 flux of irrigated rice, Agricultural and Forest Meteorology, 2001, 108: 15–27. Miyata, A., Leuning, R., Denmead, T. et al., Carbon dioxide and methane fluxes from an intermittently flooded paddy field, Agricultural and Forest Meteorology, 2000, 102: 287–303. Lin, W. H., Zhang, F. S., Bai, K. Z., Responses of plant rhizosphere to atmospheric CO2 enrichment, Chinese Science Bulletin, 1999, 45(2): 97–101. Meharg, A., A critical review of labeling techniques used to quantify rhizosphere carbon flow, Plant and Soil, 1994, 166: 55–62. Lambers, H., Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots (eds. Gregory, P. et al.), Root Development and Function, Cambridge: Cambridge University Press, 1987, 125–146. Peng, S., Eissenstal, D., Graham, J. et al., Growth depression of mycorrhizal citrus at high phosphorus supply: Analysis of carbon costs, Plant Physiol., 1993, 101: 1063–1071. Bloom, A., Sukrapanna, S., Warner, R., Root respiration associated with ammonium and nitrate absorption and assimilation by barley, Plant Physiol., 1992, 99: 1294–1301. Blagodatsky, S., Richter, O., Microbial growth in soil and nitrogen turnover: a theoretical model considering the activity rate of microorganisms, SoilBiol. Biochem., 1998, 30(13): 1743–1755. Blagodatsky, S., Yevdokimov, I., Larionova, A. et al., Microbial growth in soil and nitrogen turnover: model calibration with laboratory data, Soil Biol. Biochem., 1998, 30(13): 1757–1764. Davidson, K., Modeling microbial food webs, Mar. Ecol. Prog. Ser., 1996, 145: 279–296. Toal, M., Yeomans, C., Killham, K. et al., A review of rhizosphere carbon flow modeling, Plant and Soil, 2000, 222: 263–281. Shen, J. B., Zhang, F. S., Mao, D. R., Carbon cycling in rhizosphere microecological system, Plant Nutrition and Fertilizer Science (in Chinese), 2001, 7(2): 232–240. Hanson, P., Edwards, N., Garten, C. et al., Separating root and soil microbial contributions to soil respiration: a review of methods and observations, Biogeochemistry, 2000, 48: 115–146. Barber, D., Martin, J., The release of organic substances by cercal roots in soil, New Physiologist, 1976, 76: 69–80. Cheng, W., Coleman, D., Carroll, C. et al., Investing short-term carbon flows in the rhizospheres of different plant species, using isotopic trapping, Agronomy Journal, 1994, 86: 782–788. Killham, K., Yeomans, C,m Rhizosphere carbon flow measurement and implications: from isotope to reporter genes, Plant and Soil, 2001, 232: 91–96. Tjeerd, J., David, R., On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations, Plant and Soil, 2000, 277: 215–221. Szaniawski, R., Kielkiewicz, M., Maintenance and growth respiration in shoots and roots of sunflower plants grown at different root temperatures, Physiol. Planta., 1982, 54: 500–504.