Production and subsequent separation of 47Sc of nuclear medicine applications using neutron-induced reactions on different natural targets
Tóm tắt
47Sc can be produced from different three neutron induced nuclear reactions as 47Ti(n,p)47Sc, 50V(n,α)47Sc and 46Ca(n,γ)47Ca, 47Ca(β−)47Sc using the Egyptian Second Research Reactor. The measured neutron cross-sections (σ) are 62.12 ± 1.93, 4.51 ± 1.27 and 69.36 ± 2.01 mb from the natural targets of TiO2, V2O3 and CaO respectively. The carrier-free 47Sc from 47Ti(n,p), was purified using a composite of Alginate–Carboxymethyl cellulose/di-2-ethylhexyl phosphoric acid. The radiochemical separation of 47Sc with a recovery yield of 90 ± 1.2% was obtained. The eluted 47Sc passed quality control tests (chemical, radionuclide, and radiochemical purities) and was found to be suitable for nuclear medicine applications.
Tài liệu tham khảo
Srivastava SC (2011) Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory. Radiochim Acta 99(10):635–640
Qaim SM, Scholten B, Neumaier B (2018) New developments in the production of theranostic pairs of radionuclides. J Radioanal Nucl Chem 318(3):1493–1509
Kinsey R, Dunford C, Tuli J, Burrows T (1997) The NUDAT/PCNUDAT program for nuclear data. In: Proceedings of the 9th International Symposium on Capture gamma-ray spectroscopy and related topics. V. 2
Severin G, Engle J, Valdovinos H, Barnhart T, Nickles R (2012) Cyclotron produced 44gSc from natural calcium. J Appl Radiat Isotop 70(8):1526–1530
Pietrelli L, Mausner L, Kolsky K (1992) Separation of carrier-free47Sc from titanium targets. J Radioanal Nucl Chem 157(2):335–345
Domnanich KA, Müller C, Benešová M, Dressler R, Haller S, Köster U, Ponsard B, Schibli R, Türler A, van der Meulen NP (2017) 47 Sc as useful β–-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes. J EJNMMI Radiopharma Chem 2(1):1–17
Majkowska A, Neves M, Antunes I, Bilewicz A (2009) Complexes of low energy beta emitters 47Sc and 177Lu with zoledronic acid for bone pain therapy. J Appl Radiat Isotop 67(1):11–13
Bartoś B, Majkowska A, Krajewski S, Bilewicz AJRA (2012) New separation method of no-carrier-added 47Sc from titanium targets. J Radiochim Acta 100(7):457–462
Gandhi A, Rai N, Prajapati P, Nayak B, Saxena A, Roy B, Singh N, Mukherjee S, Kopatch YN, Ruskov I (2019) Evaluation of the nuclear excitation functions of fast neutron-induced reactions on 52 Cr and 56 Fe isotopes. Indian J Phys 93(10):1345–1351
Experimental Nuclear Reaction Data (EXFOR/CSISRS), Available from http://www.nndc.bnl.gov/exfor
TENDL-2019, https://tendl.web.psi.ch/tendl_2019/tendl2019.html
Attallah MF, El-Din AMS, Gizawy MA, Ali AM (2021) Efficient trace-scale extraction method of reactor produced 199Au adequate for nuclear medicine applications. J Radiochim Acta 109(5):397–405
Attallah MF, Rizk HE, El Sayed M (2020) Development of a radiochemical method for extraction chromatographic separation of Pb and Bi radioisotopes of forensic and environmental interest. J Radiochim Acta 108(12):989–998
Aly HF, El-Haggan MA (1971) Production of carrier-free scandium radioisotopes from a neutron-irradiated potassium titanium oxalate target. J Microchim Acta 59(1):4–8
Das Ν, Banerjee S, Lahiri S (1995) Sequential separation of carrier free 47Sc, 48V and 48, 49, 51Cr from α-particle activated titanium with TOA. J Radiochim Acta 69(1):61–64
Lahiri S, Banerjee S, Das N (1996) LLX separation of carrier-free 47Sc, 48V and 48, 49, 51Cr produced in α-particle activated titanium with HDEHP. J Appl Radiat Isotop 47(1):1–6
Kolsky K, Joshi V, Mausner L, Srivastava S (1998) Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. J Appl Radiat Isot 49(12):1541–1549
Chakravarty R, Chakraborty S, Ram R, Dash A (2017) An electroamalgamation approach to separate 47Sc from neutron-activated 46Ca target for use in cancer theranostics. J Sep Sci Technol 52(14):2363–2371
Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt P, van der Meulen N, Türler A, Schibli RJJ (2014) Promising prospects for 44Sc-/47Sc-based theragnostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 55(10):1658–1664
Mousa AM, Aziz OAA, Al-Hagar OE, Gizawy MA, Allan KF, Attallah MF (2020) Biosynthetic new composite material containing CuO nanoparticles produced by Aspergillus terreus for 47Sc separation of cancer theranostics application from irradiated Ca target. J Appl Radiat Isotop 166:109389
Gizawy MA, Shamsel-Din HA, Attallah M (2021) Purification development of carrier-free 47 Sc produced from nat Ti (n, p) reaction for radiotheranostic applications. J Radioanal Nucl Chem 44:1–6
Lou Z-n, Xin X, Xiong Y, Zhai Y-c (2019) Removal and recovery of titanium (IV) from leach liquor of high-sulfur bauxite using calcium alginate microspheres impregnated with di-(2-ethylhexyl) phosphoric acid. J Trans Nonferrous Metals Soc China 29(2):397–406
National Nuclear Data Center, information extracted from the NuDat 2.8 database, https://www.nndc.bnl.gov/nudat2/
Kinsey R (1979) ENDF/B summary documentation. Brookhaven National Lab., Upton
Lalremruata B, Otuka N, Tambave G, Mulik V, Patil B, Dhole S, Saxena A, Ganesan S, Bhoraskar V (2012) Systematic study of (n, p) reaction cross sections from the reaction threshold to 20 MeV. J Phys Rev C 85(2):024624
Said S, Elmaghraby EK, Mohamed GY, Essa H (2016) Passive measurements and activation analysis of granite samples. J Nucl Radiat Phys 11:53
Attallah MF, Gizawy MA, Shamsel-Din HA, Mohamed NM, Ali AM (2020) Assessment of reactor-produced 199 Au as a promising theranostic radionuclide and subsequent separation from platinum target. J Radioanal Nucl Chem 325(2):447–452
Moghaddam-Banaem L, Jalilian A, Pourjavid M, Radfar E, Bahrami-Samani A, Yavari K, Mazidi M, Ghannadi-Maragheh M (2012) Development of a radioscandium immunoconjugate for radioimmunotherapy. J Radiochim Acta 100(3):215–221
Kumabe I, Fukuda K (1987) Empirical formulas for 14-MeV (n, p) and (n, α) cross sections. J Nucl Sci Technol 24(10):839–843
Belgaid M, Tassadit A, Kadem F, Amokrane A (2005) Semi-empirical systematics of (n, p) reaction cross sections at 145 MeV neutron energy. J Nucl Instrum Methods Phys Res Sect B 239(4):303–313
Yiğit M (2018) Analysis of (n, p) cross sections near 14 MeV. J Appl Radiat Isotop 135:115–122
Mohamed GY, Al-Abyad M, Azzam A (2021) New empirical formulae for (n, p) reaction cross sections on stable isotopes from Z= 21 to Z= 51 for energies up to 20 MeV. J Appl Radiat Isot 178:109976
Mannhart W, Schmidt D (2007) Measurement of neutron activation cross sections in the energy range from 8 MeV to 15 MeV. Physikalisch-Technische Bundesanstalt,
Uwamino Y, Sugita H, Kondo Y, Nakamura T (1992) Measurement of neutron activation cross sections of energy up to 40 MeV using semimonoenergetic p-Be neutrons. J Nucl Sci Eng 111(4):391–403
Filatenkov A (2016) Neutron activation cross sections measured at KRI in neutron energy region 13.4–14.9 MeV. USSR report to the INDC; No0460
Das M, Sarkar B, Ramamoorthy N (1990) Yields of some radioisotopes formed in α-particle induced reactions on titanium and recovery of scandium radionuclides. J Radiochim Acta 50(3):135–140
Walczak R, Gawęda W, Dudek J, Choiński J, Bilewicz A (2019) Influence of metal ions on the 44 Sc-labeling of DOTATATE. J Radioanal Nucl Chem 322(2):249–254