Topology optimization of continuum structures with local and global stress constraints

Structural and Multidisciplinary Optimization - Tập 39 - Trang 419-437 - 2008
J. París1, F. Navarrina1, I. Colominas1, M. Casteleiro1
1Group of Numerical Methods in Engineering, GMNI, Department of Applied Mathematics, Civil Engineering School, Universidade da Coruña, Coruña, Spain

Tóm tắt

Topology structural optimization problems have been usually stated in terms of a maximum stiffness (minimum compliance) approach. The objective of this type of approach is to distribute a given amount of material in a certain domain, so that the stiffness of the resulting structure is maximized (that is, the compliance, or energy of deformation, is minimized) for a given load case. Thus, the material mass is restricted to a predefined percentage of the maximum possible mass, while no stress or displacement constraints are taken into account. This paper presents a different strategy to deal with topology optimization: a minimum weight with stress constraints Finite Element formulation for the topology optimization of continuum structures. We propose two different approaches in order to take into account stress constraints in the optimization formulation. The local approach of the stress constraints imposes stress constraints at predefined points of the domain (i.e. at the central point of each element). On the contrary, the global approach only imposes one global constraint that gathers the effect of all the local constraints by means of a certain so-called aggregation function. Finally, some application examples are solved with both formulations in order to compare the obtained solutions.

Tài liệu tham khảo

Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202 Bendsøe MP (1995) Optimization of structural topology, shape, and material. Springer, Heidelberg Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224 Cheng GD, Guo X (1997) ε-relaxed approach in structural topology optimization. Struct Optim 13:258–266 Cheng G, Jiang Z (1992) Study on topology optimization with stress constraints. Eng Optim 20:129–148 Duysinx P (1998) Topology optimization with different stress limits in tension and compression. International report: robotics and automation. Institute of Mechanics, University of Liege, Liege Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478 Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distributions. In: 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, Saint Louis, 2–4 September 1998 Fletcher R (1987) Practical methods of optimization. Wiley, Edinburgh Hughes TJR (1987) The finite element method: linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs Kirsch U (1990) On singular topologies in optimum structural design. Struct Optim 2:133–142 Kirsch U, Topping BHV (1992) Minimum weight design of structural topologies. J Struct Eng, ASCE 118:1770–1785 Kohn RV, Strang G (1986) Optimal design and relaxation of variational problems. Commun Pure Appl Math 39:1–25 (Part I), 139–182 (Part II), 353–377 (Part III) Liang QQ et al (1999) Optimal selection of topologies for the minimum-weight design of continuum structures with stress constraints. Proc Inst Mech Eng, C, J Mech Eng Sci (UK) 213(8):755–762 Lewinsky T, Rozvany GIN (2008) Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains. Struct Multidisc Optim 35:165–174 Martins JRRA, Poon NMK (2005) On structural optimization using constraint aggregation. In: (WCSMO6) Proc. VI world congress on structural and multidisciplinary optimization, Rio de Janeiro, 30 May–3 June 2005 Muíños I (2001) Optimización topológica de estructuras: una formulación de elementos finitos para la minimización del peso con restricciones en tensión (in Spanish). Technical Report, ETSICCP, Universidade da Coruña, A Coruña Muíños I et al (2002) Una formulación de mínimo peso con restricciones en tensión para la optimización topológica de estructuras (in Spanish). Métodos Numéricos en Ingeniería y Ciencias Aplicadas, CIMNE, 399–408, Barcelona Navarrina F, Casteleiro M (1991) A general methodologycal analysis for optimum design. Int J Numer Methods Eng 31:85–111 Navarrina F et al (2000) High order shape design sensitivity: a unified approach. Comput Methods Appl Mech Eng 188:681–696 Navarrina F et al (2001) An efficient MP algorithm for structural shape optimization problems. In: Hernández S, Brebbia CA (eds) Computer aided optimum design of structures VII. WIT, Southampton, pp 247–256 Navarrina F et al (2002) Optimización topológica de estructuras: una formulación de mínimo peso con restricciones en tensión (in Spanish). Métodos Numéricos en Ingeniería V (Book and CD-ROM, ISBN: 84-95999-03-X), SEMNI, Barcelona Navarrina F et al (2004) Topology optimization of structures: a minimum weight approach with stress constraints. Adv Eng Softw 36:599–606 París et al (2005) A minimum weight FEM formulation for structural topological optimization with local stress constraints. In: (WCSMO6) Proc. VI world congress on structural and multidisciplinary optimization, Rio de Janeiro, 30 May–3 June 2005 Pereira JT et al (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidisc Optim 26(1–2):50–66 Ramm E et al (2000) Advances in structural optimization including nonlinear mechanics. In: Proc. of the European congress on computational methods in applied sciences and engineering [ECCOMAS 2000] (CD-ROM, ISBN: 84-89925-70-4), ECCOMAS, Barcelona, 11–14 September 2000 Rozvany GIN, Zhou M (1991) Applications of the COC algorithm in layout optimization. In: Eschenauer H, Matteck C, Olhoff N (eds) Engineering optimization in design processes, Proc. int. conf. held in Karlsruhe, Germany, Sept. 1990, pp. 59–70, Springer, Berlin Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogeneization. Struct Optim 4:250–254 Schmit LA (1960) Structural design by systematic synthesis. In: Proc. of the second ASCE conference on electronic computation. ASCE, Pittsburgh, pp 105–122 Stolpe M, Svanberg K (2001) On the trajectories of the epsilon-relaxation approach for stress-constrained truss topology optimization. Struct Multidisc Optim 21(2):140–151 Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Optim 12:98–105 Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336