Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province, Argentina
Tóm tắt
The iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province, Argentina, was analyzed. Borehole sampling and chemical analyses were performed and evaluated based on the hydrogeological characteristics of the phreatic aquifer located in the coastal barrier, which is the only supply source to the population. Fe concentrations in groundwater fluctuate between 0.03 and 3.5 mg/L, with a mean value of 0.33 mg/L, whereas Mn varies between 0.03 and 1.20 mg/L, with a mean value of 0.24 mg/L. There is a relationship between the geomorphological environments and the distribution of major ions, except the case of Fe and Mn. The sand that constitutes the aquifer contains pyroxenes, amphiboles, biotite, Fe oxides and hydroxides, and volcanic groundmass stained by hydroxides, all of which are the source of Fe and Mn—whose concentrations are unrelated to each other, to Ph or to Eh due to a state of redox disequilibrium. Possible health risks due to Fe and Mn excess in water are considered. According to the international guidelines for Fe, 38 % of the samples exceed the acceptable values, while 33 % exceed the Argentine standards. As regards Mn, the samples with excess Mn are 53 and 38 %, respectively. Further groundwater quality monitoring and chemical studies are necessary, especially regarding the evolution of Fe and Mn contents. To offer an adequate supply of drinking water to the population, it is necessary to remove Fe and Mn so that the concentrations are within the drinking water guidelines.
Tài liệu tham khảo
Apello CAJ, Postma D (2007) Geochemistry, groundwater and pollution. A.A Balkema publishers, Leiden
ATSDR (2000) Toxicological profile for manganese. http://www.atsdr.cdc.gov/toxprofiles/tp151.html. Accessed 23 March 2013
Barbagallo J, Vizcaíno A, González Arzac R, Campos Alfonso F (1994) Hidroquímica de acuíferos costeros, San Clemente del Tuyú. Provincia de Buenos Aires, República Argentina. Águas Subterrâneas: Suplemento VIII Congreso Brasileiro de Águas Subterrâneas. http://www.aguassubterraneas.abas.org.asubterraneas/issue/view/1193. Accessed 17 March 2014
Barnes NA, Kehew AE, Krishnamurthy RV, Koretsky CM (2011) Redox evolution in glacial drift aquifers: role of diamicton units in reduction of Fe(III). Environ Earth Sci 62:1027–1038. doi:10.1007/s12665-010-0590-7
Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007) Hair manganese and hyperactive behaviours: pilot study of school age children exposed through tap water. Environ Health Perspect 115:122–127
Carretero S (2011) Comportamiento hidrológico de las dunas costeras en el sector nororiental de la provincia de Buenos Aires [Hydrological behavior in the Northeastern coast of Buenos Aires province] Doctoral Thesis. Facultad de Ciencias Naturales y Museo, La Plata. Argentina. http://sedici.unlp.edu.ar/handle/10915/4918. Accessed 15 February 2013
Carretero S, Kruse E (2010) Areal exploitation of groundwater in coastal dunes, Buenos Aires. Argentina. In: Paliwal BS (ed) Global groundwater resources and management. Scientific Publishers (India), Jodhpur, pp 385–398
Carretero S, Kruse E (2012) Relationship between precipitation and water-table fluctuation in a coastal dune aquifer: northeastern coast of the Buenos Aires province, Argentina. Hydrogeol J 20:1613–1621. doi:10.1007/s10040-012-0890-y
Carretero S, Dapeña C, Kruse E (2013) Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer in the northeastern coast of the province of Buenos Aires, Argentina. Isot Environ Health Stud 49(3):399–419. doi:10.1080/10256016.2013.776557
Catalán Lafuente JG (1969) Química del agua. Blume, Madrid
Chidambaram S, Karmegam U, Prasanna MV, Sasidhar P, Vasanthavigar M (2011) A study on hydrochemical elucidation of coastal groundwater in and around Kalpakkam region, Southern India. Environ Earth Sci 64:1419–1431. doi:10.1007/s12665-011-0966-3
Consejo Federal de Inversiones (1990) Evaluación del Recurso Hídrico Subterráneo de la Región Costera Atlántica de la Provincia de Buenos Aires Región I Punta Rasa-Punta Médanos.Informe Final. Tomo I Hidrología Subterránea. CFI, Buenos Aires
Custodio E, Llamas MR (1996) Hidrología Subterránea. Omega, Barcelona
Daughney CJ (2003) Iron and manganese in New Zealand’s groundwater. J Hydrol (NZ) 42(1):11–26
EU (1998) Drinking Water Directive. Council Directive 98/83/EC on the quality of water intented for human consumption. http://eurlex.europa.eu/LexUriServ/LexUriServdo?uri=OJ:L:1998:330:0032:0054:EN:PDF. Accessed 17 June 2013
Hem JD (1985) Study and Interpretation of the Chemical Characteristics of Natural Water. Third Edition US Geological Survey Water-Supply Paper 2254. United States Government Printing Office, USA
INDEC (2010) Censo Nacional de Población, Hogares y Viviendas. http://www.censo2010.indec.gov.ar/. Accessed 23 July 2012
Kondakis XG, Makris N, Leotsinidis M, Prinou M, Papapetropoulos T (1989) Possible health effects of high manganese concentrations in drinking water. Arch Environ Health 44:175–178
Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, New Jersey
Lindhurg RE, Runnells DD (1984) Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 225:925–927
Mauriño V (1956) Los sedimentos psamíticos actuales de la región costera comprendida entre Faro Recalada y Faro Monte Hermoso. LEMIT Serie II 61:1–35
Mazzoni MM (1977) Características composicionales de la fracción pesados de arenas de playa frontal del litoral atlántico bonaerense. Revista de la Asociación Argentina de Mineralogía, Petrología y Sedimentología. Tomo III no. 3–4:73–91
Ministerio de Agricultura, Ganadería, Pesca y Alimentos (2007) Código Alimentario Argentino. Decreto 815/1999 y 4238/1968, resolución 68/2007 y 196/2007. http://www.alimentosargentinos.gov.ar/contenido/marco/marco2.php. Accessed 22 May 2013
Ramesh R, Shiv Kumar K, Eswaramoorthi S, Purvaja GR (1995) Migration and contamination of major and trace elements in groundwater of Madras City, India. Environ Geol 25:126–136
Spalletti LA, Mazzoni MM (1979) Caracteres granulométricos de arenas de playa frontal, playa distal y médano litoral atlántico bonaerense. Rev Asoc Geol Arg 34:12–30
Teruggi ME, Chaar E, Remiro JR, Limousin T (1959) Las arenas de la costa de la provincia de Buenos Aires entre Cabo San Antonio y Bahía Blanca. LEMIT Serie II 77:1–37
USEPA (2003) National secondary drinking water regulations. USEPA 816-F-03-016. http://www.U.S.EPA.gov/safewater/contaminants/index.html#sec. Accessed 20 May 2013
USEPA (2004) Drinking water health advisory for manganese. http://www.U.S.EPA.gov/safewater/ccl/pdfs/reg_determine1/support_cc1_magnese_dwreport.pdf. Accessed 20 May 2013
Violante RA, Parker G (2000) El Holoceno en las regiones marinas y costeras del nordeste de la provincia de Buenos Aires. Rev Asoc Geol Arg 55:337–351
Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P et al (2006) Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129
Weng H-X, Qin Y-Ch, Chen X-H (2007) Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain, China. Hydrogeol J 15:715–726
WHO (2006) Guidelines for drinking water quality. Final task group meeting. WHO Press. World Health Organization, Geneva
Yuce G, Alptekin C (2013) In situ and laboratory treatment tests for lowering of excess manganese and iron in drinking water sourced from river–groundwater interaction. Environ Earth Sci. doi:10.1007/s12665-013-2343-x
Zhang Y, Sun J, Huang G, Jing J, Liu J, Zhang Y (2010) Natural background levels of Fe and Mn in groundwater of Pearl River Delta. International conference on digital manufacturing and automation 978-0-7695-4286-7/10. IEEE Computer Society. pp 972–997. doi:10.1109/ICDMA.2010.288. Accessed 6 April 2013