Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations
Tài liệu tham khảo
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
J. Cottrell, T. Hughes, Y. Bazilevs, Isogeometric Analysis: Towards Integration of CAD and FEA, John Wiley & Sons, 2009.
Kagan, 2000, Integrated mechanically based CAE system using B-spline finite elements, Comput. Aided Des., 32, 539, 10.1016/S0010-4485(00)00041-5
Schmidt, 2009, Realization of an integrated structural design process: analysis-suitable geometric modelling and isogeometric analysis, Comput. Visual. Sci., 13, 315, 10.1007/s00791-010-0147-z
Cohen, 2010, Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 334, 10.1016/j.cma.2009.09.010
Evans, 2009, n-widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method, Comput. Methods Appl. Mech. Engrg., 198, 1726, 10.1016/j.cma.2009.01.021
Gromann, 2012, Isogeometric simulation of turbine blades for aircraft engines, Comput. Aided Geometr. Des., 29, 519, 10.1016/j.cagd.2012.03.002
Cottrell, 2006, Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Engrg., 195, 5257, 10.1016/j.cma.2005.09.027
Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: Comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006
Elguedj, 2008, B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements, Comput. Methods Appl. Mech. Engrg., 197, 2732, 10.1016/j.cma.2008.01.012
Taylor, 2011, Isogeometric analysis of nearly incompressible solids, Int. J. Numer. Methods Engrg., 87, 273, 10.1002/nme.3048
Echter, 2010, Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. Methods Appl. Mech. Engrg., 199, 374, 10.1016/j.cma.2009.02.035
Benson, 2010, H.T.J.R., Isogeometric shell analysis: The Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 276, 10.1016/j.cma.2009.05.011
Benson, 2013, Blended Isogeometric Shells, Comput. Methods Appl. Mech. Engrg., 255, 133, 10.1016/j.cma.2012.11.020
Echter, 2013, A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170, 10.1016/j.cma.2012.10.018
Bazilevs, 2008, Isogeometric fluid–structure interaction: Theory, algorithms and computations, Comput. Mech., 43, 3, 10.1007/s00466-008-0315-x
Bazilevs, 2011, 3D simulation of wind turbine rotors at full scale, Part II: Fluid–structure interaction, Int. J. Numer. Methods Fluids, 65, 236, 10.1002/fld.2454
Bazilevs, 2012, Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines, Comput. Methods Appl. Mech. Engrg., 249–252, 28, 10.1016/j.cma.2012.03.028
Bazilevs, 2007, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197, 173, 10.1016/j.cma.2007.07.016
Akkerman, 2008, The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 371, 10.1007/s00466-007-0193-7
Gomez, 2008, Isogeometric analysis of the Cahn-Hilliard phase-field model, Comput. Methods Appl. Mech. Engrg., 197, 4333, 10.1016/j.cma.2008.05.003
M. Borden, C. Verhoosel, M. Scott, T.J.R. Hughes, C. Landis, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg. 217–220 (2012) 77–95.
Dede’, 2012, Isogeometric analysis for topology optimization with a phase field model, Arch. Comput. Methods Engrg., 19, 427, 10.1007/s11831-012-9075-z
Liu, 2013, Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow, Comput. Phys., 242, 321, 10.1016/j.jcp.2013.02.008
Temizer, 2011, Contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 200, 1100, 10.1016/j.cma.2010.11.020
Temizer, 2012, Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS, Comput. Methods Appl. Mech. Engrg., 209–212, 115, 10.1016/j.cma.2011.10.014
De Lorenzis, 2012, A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method, Comput. Mech., 49, 1, 10.1007/s00466-011-0623-4
Matzen, 2013, A point to segment contact formulation for isogeometric, NURBS based finite elements, Comput. Methods Appl. Mech. Engrg., 255, 27, 10.1016/j.cma.2012.11.011
Wall, 2008, Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 2976, 10.1016/j.cma.2008.01.025
Qian, 2011, Isogeometric shape optimization of photonic crystals via coons patches, Comput. Methods Appl. Mech. Engrg., 200, 2237, 10.1016/j.cma.2011.03.007
Kim, 2009, Isogeometric analysis for trimmed CAD surfaces, Comput. Methods Appl. Mech. Engrg., 198, 2982, 10.1016/j.cma.2009.05.004
Rueberg, 2012, Subdivision-stabilised immersed B-spline finite elements for moving boundary flows, Comput. Methods Appl. Mech. Engrg., 209–212, 266, 10.1016/j.cma.2011.10.007
D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, E. Rank, Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method, Comput. Mech. 50(4).
Rank, 2012, Geometric modeling, isogeometric analysis and the finite cell method, Comput. Methods Appl. Mech. Engrg., 249–250, 104, 10.1016/j.cma.2012.05.022
Ruess, 2013, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Int. J. Numer. Methods Engrg., 95, 811, 10.1002/nme.4522
D. Schillinger, Q. Cai, R.-P. Mundani, E. Rank, Nonlinear structural analysis of complex CAD and image based geometric models with the finite cell method, in: M.E.A. Bader (Ed.), Lecture Notes in Computational Science and Engineering, Springer, 2013 (accepted).
Simpson, 2012, A two-dimensional isogeometric boundary element method for elastostatic analysis, Comput. Methods Appl. Mech. Engrg., 209–212, 87, 10.1016/j.cma.2011.08.008
Scott, 2013, Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197, 10.1016/j.cma.2012.11.001
Borden, 2011, Isogeometric finite element data structures based on Bézier extraction of NURBS, Int. J. Numer. Methods Engrg., 87, 15, 10.1002/nme.2968
Scott, 2011, Isogeometric finite element data structures based on Bézier extraction of T-splines, Int. J. Numer. Methods Engrg., 88, 126, 10.1002/nme.3167
Scott, 2012, Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213–216, 206, 10.1016/j.cma.2011.11.022
Collier, 2012, The cost of continuity: a study of the performance of isogeometric finite elements using direct solvers, Comput. Methods Appl. Mech. Engrg., 213–216, 353, 10.1016/j.cma.2011.11.002
N. Collier, D. Pardo, L. Dalcin, V. Calo, The cost of continuity: performance of iterative solvers on isogeometric finite elements, eprint arXiv:1206.2948.
S. Kleiss, C. Pechstein, B. Jüttler, S. Tomar, IETI – Isogeometric Tearing and Interconnecting, Comput. Methods Appl. Mech. Engrg. 247–248.
Beirão da Veiga, 2012, Overlapping Schwarz methods for isogeometric analysis, SIAM J. Numer. Anal., 50, 1394, 10.1137/110833476
Beirão da Veiga, 2012, Isogeometric Schwarz preconditioners for linear elasticity systems, Comput. Methods Appl. Mech. Engrg., 253, 439, 10.1016/j.cma.2012.10.011
Beirão da Veiga, 2013, BDDC preconditioners for isogeometric analysis, Math. Models Methods Appl. Sci., 23, 1099, 10.1142/S0218202513500048
Gahalaut, 2012, Multigrid methods for isogeometric discretization, Comput. Methods Appl. Mech. Engrg., 253, 413, 10.1016/j.cma.2012.08.015
Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004
Auricchio, 2012, A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 249–252, 15, 10.1016/j.cma.2012.04.014
Auricchio, 2010, Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 2075, 10.1142/S0218202510004878
Auricchio, 2012, Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249–252, 2, 10.1016/j.cma.2012.03.026
M. Bischoff, W. Wall, K.-U. Bletzinger, E. Ramm, Models and finite elements for thin-walled structures, in: E. Stein, R. de Borst, T. Hughes (Eds.), Encyclopedia of Computational Mechanics, vol. 2, John Wiley & Sons, 2004, pp. 59–137 (Chapter 3).
Beirão da Veiga, 2012, Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods, Comput. Methods Appl. Mech. Engrg., 241–244, 38, 10.1016/j.cma.2012.05.020
F. Auricchio, L. Beirão da Veiga, J. Kiendl, C. Lovadina, A. Reali, Locking-free isogeometric collocation methods for spatial Timoshenko rods, Comput. Methods Appl. Mech. Engrg., doi:10.1016/j.cma.2013.03.009.
Kravchenko, 1996, Zonal embedded grids for numerical simulation of wall-bounded turbulent flows, J. Comput. Phys., 127, 412, 10.1006/jcph.1996.0184
Shariff, 1998, Two-dimensional mesh embedding for B-spline methods, J. Comput. Phys., 145, 471, 10.1006/jcph.1998.6053
Bazilevs, 2010, Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and residual-based variational multiscale method, J. Comput. Phys., 229, 3402, 10.1016/j.jcp.2010.01.008
Bazilevs, 2010, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes, Comput. Methods Appl. Mech. Engrg., 199, 780, 10.1016/j.cma.2008.11.020
Kravchenko, 1999, B-spline method and zonal grids for simulation of complex turbulent flows, J. Comput. Phys., 151, 757, 10.1006/jcph.1999.6217
Evans, 2013, Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations, Math. Models Methods Appl. Sci., 23, 1421, 10.1142/S0218202513500139
Evans, 2013, Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations, J. Comput. Phys., 241, 141, 10.1016/j.jcp.2013.01.006
Bialecki, 2001, Orthogonal spline collocation methods for partial differential equations, J. Comput. Appl. Math., 128, 55, 10.1016/S0377-0427(00)00509-4
Botella, 2002, On a collocation B-spline method for the solution of the Navier–Stokes equations, Comput. Fluids, 31, 397, 10.1016/S0045-7930(01)00058-5
Botella, 2003, A high-order mass-lumping procedure for B-spline collocation method with application to incompressible flow simulations, Int. J. Numer. Methods Fluids, 41, 1295, 10.1002/fld.435
Johnson, 2005, A B-spline collocation method for solving the incompressible Navier–Stokes equations using an ad hoc method: the boundary residual method, Comput. Fluids, 34, 121, 10.1016/j.compfluid.2004.03.005
Johnson, 2005, Higher order B-spline collocation at the Greville abscissae, Appl. Numer. Math., 52, 63, 10.1016/j.apnum.2004.04.002
Schillinger, 2011, An unfitted hp adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry, Comput. Methods Appl. Mech. Engrg., 200, 3358, 10.1016/j.cma.2011.08.002
Vuong, 2011, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 3554, 10.1016/j.cma.2011.09.004
Schillinger, 2012, An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces, Comput. Methods Appl. Mech. Engrg., 249–250, 116, 10.1016/j.cma.2012.03.017
D. Schillinger, The p- and B-spline versions of the geometrically nonlinear finite cell method and hierarchical refinement strategies for adaptive isogeometric and embedded domain analysis, Dissertation, Technische Universität München, http://d-nb.info/103009943X/34, 2012
Bornemann, 2013, A subdivision-based implementation of the hierarchical b-spline finite element method, Comput. Methods Appl. Mech. Engrg., 253, 584, 10.1016/j.cma.2012.06.023
D. Zorin, P. Schröder, T. DeRose, L. Kobbelt, A. Levin, W. Sweldens, Subdivision for modeling and animation, Tech. rep. (2000).
Warren, 2002
H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann Publishers, 2006.
Burstedde, 2011, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Scient. Comput., 33, 1103, 10.1137/100791634
Bangerth, 2011, Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Softw., 38, 14, 10.1145/2049673.2049678
Giannelli, 2012, THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geometr. Des., 29, 485, 10.1016/j.cagd.2012.03.025
L. Piegl, W. Tiller, The NURBS Book, Springer, 1997.
E. Cohen, R. Riesenfeld, G. Elber, Geometric Modeling with Splines: An Introduction, A K Peters/CRC Press, 2001.
Rogers, 2001
Farin, 2002
Rhinoceros – NURBS modeling for Windows, http://www.rhino3d.com/ (2012)
Finlayson, 1966, The method of weighted residuals - a review, Appl. Mech. Rev., 19, 735
Finlayson, 1972
Pinder, 1979, A new collocation method for the solution of the convection-dominated transport equation, Water Resour. Res., 15, 1177, 10.1029/WR015i005p01177
G. Carey, J. Oden, Finite Elements: A Second Course, Prentice-Hall, 1983.
Chen, 2009, Subdomain radial basis collocation method for heterogeneous media, Int. J. Numer. Methods Engrg., 80, 163, 10.1002/nme.2624
Hu, 2007, Weighted radial basis collocation method for boundary value problems, Int. J. Numer. Methods Engrg., 69, 2736, 10.1002/nme.1877
Chen, 2008, Reproducing kernel enhanced local radial basis collocation method, Int. J. Numer. Methods Engrg., 75, 600, 10.1002/nme.2269
Hu, 2011, Error analysis of collocation method based on reproducing kernel approximation, Numer. Methods Part. Differ. Eqs., 27, 554, 10.1002/num.20539
Aluru, 2000, A point collocation method based on reproducing kernel approximations, Int. J. Numer. Methods Engrg., 47, 1083, 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-N
Kim, 2006, Maximum principle and convergence analysis for the meshfree point collocation method, SIAM J. Numer. Anal., 44, 515, 10.1137/04060809X
Russell, 1975, A comparison of global methods for linear two-point boundary value problems, Math. Comput., 29, 1007, 10.1090/S0025-5718-1975-0388788-3
Prenter, 1989
T. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, 2000.
de Boor, 1973, Collocation at Gaussian points, SIAM J. Numer. Anal., 10, 582, 10.1137/0710052
Jator, 2007, A high oder B-spline collocation method for linear boundary value problems, Appl. Math. Comput., 191, 100
Demko, 1985, On the existence of interpolation projectors onto spline spaces, J. Approx. Theory, 43, 151, 10.1016/0021-9045(85)90123-6
Farouki, 2012, The Bernstein polynomial basis: A centennial retrospective, Comput. Aided Geometr. Des., 29, 379, 10.1016/j.cagd.2012.03.001
B. Szabó, I. Babuška, Finite Element Analysis, Wiley, 1991.
L.S.T. Corporation, LS-Dyna 971 R5 user’s manual.
Evans, 2012, Discrete spectrum analyses for various mixed discretizations of the Stokes eigenproblem, Comput. Mech., 50, 667, 10.1007/s00466-012-0788-5
Golub, 1996
Quarteroni, 2008
C. Christara, K. Jackson, Numerical methods, in: G. Trigg (Ed.), Mathematical Tools for Physicists, Wiley, 2005.
C. Ashcraft, R. Grimes, personal communication.
M. Sadd, Elasticity, Theory, Applications, and Numerics, Academic Press, 2009.
Trilinos Version 11.0, Sandia National Laboratories, http://trilinos.sandia.gov, 2012.
G. Strang, G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, 1973.
Bazilevs, 2006, Isogeometric analysis: approximation, stability and error estimates for h-refined meshes, Math. Models Methods Appl. Sci., 16, 1031, 10.1142/S0218202506001455
Arnold, 1983, On the asymptotic convergence of collocation methods, Math. Comput., 41, 349, 10.1090/S0025-5718-1983-0717691-6
Arnold, 1984, On the asymptotic convergence of spline collocation methods for partial differential equations, SIAM J. Numer. Anal., 21, 459, 10.1137/0721034
Chui, 1992
Peters, 2008
Sabin, 2010
Schillinger, 2010, The finite cell method for geometrically nonlinear problems of solid mechanics, IOP Conf. Ser.: Mater. Sci. Engrg., 10, 012170, 10.1088/1757-899X/10/1/012170
Rank, 1992, Adaptive remeshing and h-p domain decomposition, Comput. Methods Appl. Mech. Engrg., 101, 299, 10.1016/0045-7825(92)90027-H
Schillinger, 2012, The hp-d adaptive finite cell method for geometrically nonlinear problems of solid mechanics, Int. J. Numer. Methods Engrg., 89, 1171, 10.1002/nme.3289
D. Forsey, R. Bartels, Hierarchical B-spline refinement, Computer Graphics (SIGGRAPH ’88 Proceedings) 22 (4) (1988) 205–212.
R. Kraft, Adaptive and linearly independent multilevel B-splines, in: A. Méhauté, C. Rabut, L. Schumaker (Eds.), Surface Fitting and Multiresolution Methods, Vanderbilt University Press, 1997, pp. 209–218.
K. Hóllig, Finite Element Methods with B-Splines, Society for Industrial and, Applied Mathematics, 2003.
Yserantant, 1986, On the multi-level splitting of finite element spaces, Numer. Math., 49, 379, 10.1007/BF01389538
Krysl, 2003, Natural hierarchical refinement for finite element methods, Int. J. Numer. Methods Engrg., 56, 1109, 10.1002/nme.601
Govindjee, 2012, Convergence of an efficient local least-squares fitting method for bases with compact support, Comput. Methods Appl. Mech. Engrg., 213–216, 84, 10.1016/j.cma.2011.11.017
W. Chen, Y. Cai, J. Zheng, Generalized hierarchical NURBS for interactive shape modification, in: Proceedings of the 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applations in Industry, 2008.
W. Chen, Y. Cai, J. Zheng, Freeform-based form feature modeling using a hierarchical and multi-resolution NURBS method, in: Proceedings of the 9th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applations in Industry, 2010.
O. Zienkiewicz, R. Taylor, The Finite Element Method – Fluid Dynamics, 6th edition, vol. 3, Butterworth-Heinemann, 2005.
Donea, 2003
Brooks, 1982, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199, 10.1016/0045-7825(82)90071-8
Bazilevs, 2007, Weak imposition of dirichlet boundary conditions in fluid mechanics, Comput. Fluids, 36, 12, 10.1016/j.compfluid.2005.07.012
Bazilevs, 2010, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199, 229, 10.1016/j.cma.2009.02.036
Dörfel, 2010, Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 264, 10.1016/j.cma.2008.07.012
Hughes, 1978, A simple scheme for developing upwind finite elements, Int. J. Numer. Methods Engrg., 12, 1359, 10.1002/nme.1620120904
Hughes, 1979, Finite element analysis of incompressible viscous flows by the penalty function formulation, J. Comput. Phys., 30, 1, 10.1016/0021-9991(79)90086-X
Shapiro, 1981, Analysis of an upstream weighted collocation approximation to the transport equation, J. Comput. Phys., 39, 46, 10.1016/0021-9991(81)90136-4
S. Adjerid, M. Aiffa, J. Flaherty, Computational methods for singularly perturbed systems, in: AMS Proceedings of Symposia in Applied Mathematics, American Mathematical Society, 1998, pp. 47–83.
Funaro, 1998, Spline approximation of advection-diffusion problems using upwind type collocation nodes, J. Comput. Appl. Math., 110, 141, 10.1016/S0377-0427(99)00207-1