Investigation of grafted mesoporous silicon sponge using hyperpolarized 129Xe NMR spectroscopy
Tóm tắt
Temperature-dependent (173–373 K) hyperpolarized 129Xe nuclear magnetic resonance (129Xe NMR) analyses along with transmission electron microscopy and N2 adsorption measurements have been applied to understand pore structure and interconnectivity of bare and grafted mesoporous silicon sponge (MSS) materials. The Xe NMR chemical shift data indicate the existence of micropores inside the larger mesopore channels and the effects of grafting on the pore surfaces. The grafted layer estimated at 2 nm in thickness blocks the micropores on the surfaces of mesoporous channels. Partitioning of Xe between the micropores and the mesopores in the MSS materials is temperature-dependent, with Xe principally occupying the micropores at lower temperatures. In addition, the temperature-dependent Xe peak shift of MSS materials verifies the increased uniformity and interconnectivity of mesopores after surface grafting. The results from this study provide useful information for design and development of novel materials.
Tài liệu tham khảo
M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652–657 (2008).
M.S. Whittingham: Materials challenges facing electrical energy storage. MRS Bull. 33, 411–419 (2011).
A.J. Smith, J.C. Burns, X. Zhao, D. Xiong, and J.R. Dahn: A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 158, A447–A452 (2011).
Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupre, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, and D. Guyomard: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21, 6201–6208 (2011).
M. Holzapfel, H. Buqa, F. Krumeich, P. Novák, F-M. Petrat, and C. Veit: Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 8, A516–A520 (2005).
M.N. Obrovac and L.J. Krause: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).
O.K. Park, Y. Cho, S. Lee, H-C. Yoo, H-K. Song, and J. Cho: Who will drive electric vehicles, olivine or spinel?Energy Environ. Sci. 4, 1621–1633 (2011).
A.J. Smith, H.M. Dahn, J.C. Burns, and J.R. Dahn: Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55 °C. J. Electrochem. Soc. 159, A705–A710 (2012).
U. Kasavajjula, C. Wang, and A.J. Appleby: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 1003–1039 (2007).
W-J. Zhang: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 13–24 (2011).
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).
M.T. McDowell, I. Ryu, S.W. Lee, C. Wang, W.D. Nix, and Y. Cui: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034–6041 (2012).
M. Gu, Y. Li, X. Li, S. Hu, X. Zhang, W. Xu, S. Thevuthasan, D.R. Baer, J-G. Zhang, J. Liu, and C. Wang: In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 8439–8447 (2012).
X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M.J. Sailor, J-G. Zhang, and J. Liu: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).
D. Kim, J. Joo, Y. Pan, A. Boarino, Y.W. Jun, K.H. Ahn, B. Arkles, and M.J. Sailor: Thermally induced silane dehydrocoupling on silicon nanostructures. Angew. Chem., Int. Ed. 55, 6423–6427 (2016).
I.L. Moudrakovski, V.V. Terskikh, C.I. Ratcliffe, J.A. Ripmeester, L-Q. Wang, Y. Shin, and G.J. Exarhos: A 129Xe NMR study of functionalized ordered mesoporous silica. J. Phys. Chem. B 106, 5938–5946 (2002).
J.A. Ripmeester: Nuclear shielding of trapped xenon obtained by proton-enhanced, magic-angle spinning xenon-129 NMR spectroscopy. J. Am. Chem. Soc. 104, 289–290 (1982).
T. Ito and J. Fraissard: 129Xe NMR study of xenon adsorbed on Y zeolites. J. Chem. Phys. 76, 5225–5229 (1982).
C.I. Ratcliffe: Xenon NMR. Annu. Rep. NMR Spectrosc. 36, 123–221 (1998).
B.C. Grover: Noble-gas NMR detection through noble-gas-rubidium hyperfine contact interaction. Phys. Rev. Lett. 40, 391–392 (1978).
W. Happer, E. Miron, S. Schaefer, D. Schreiber, W.A. van Wijngaarden, and X. Zeng: Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms. Phys. Rev. A 29, 3092–3110 (1984).
B. Driehuys, G.D. Cates, E. Miron, K. Sauer, D.K. Walter, and W. Happer: High-volume production of laser-polarized 129Xe. Appl. Phys. Lett. 69, 1668–1670 (1996).
I.C. Ruset, S. Ketel, and F.W. Hersman: Optical pumping system design for large production of hyperpolarized 129Xe. Phys. Rev. Lett. 96, 053002 (2006).
K. Knagge, J.R. Smith, L.J. Smith, J. Buriak, and D. Raftery: Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments. Solid State Nucl. Magn. Reson. 29, 85–89 (2006).
V.V. Terskikh, I.L. Mudrakovskii, and V.M. Mastikhin: 129Xe nuclear magnetic resonance studies of the porous structure of silica gels. J. Chem. Soc., Faraday Trans. 89, 4239–4243 (1993).
J.A. Ripmeester and C.I. Ratcliffe: Application of xenon-129 NMR to the study of microporous solids. J. Phys. Chem. 94, 7652–7656 (1990).
V.V. Terskikh, I.L. Moudrakovski, S.R. Breeze, S. Lang, C.I. Ratcliffe, J.A. Ripmeester, and A. Sayari: A general correlation for the 129Xe NMR chemical shift–pore size relationship in porous silica-based materials. Langmuir 18, 5653–5656 (2002).
L-Q. Wang, D. Wang, J. Liu, G.J. Exarhos, S. Pawsey, and I. Moudrakovski: Probing porosity and pore interconnectivity in crystalline mesoporous TiO2 using hyperpolarized 129Xe NMR. J. Phys. Chem. C 113, 6577–6583 (2009).
Y. Mao, M. Song, R. Hopson, N.K. Karan, P.R. Guduru, and L-Q. Wang: Hyperpolarized 129Xe nuclear magnetic resonance studies of Si nanocomposite electrode materials. Energy Fuels 30, 1470–1476 (2016).
M.J. Sailor: Porous Silicon in Practice: Preparation, Characterization, and Applications (Wiley-VCH, Weinheim, Germany, 2012); p. 249.
Z. Qin, J. Joo, L. Gu, and M.J. Sailor: Size control of porous silicon nanoparticles by electrochemical perforation etching. Part. Part. Syst. Charact. 31, 252–256 (2014).
Y. Mao, D. Kim, J. Joo, M.J. Sailor, R. Hopson, and L-Q. Wang: Hyperpolarized 129Xe nuclear magnetic resonance study of mesoporous silicon sponge materials. J. Mater. Res. 32, 3038–3045 (2017).
D.N. Sears, R.E. Wasylishen, and T. Ueda: Grand canonical monte carlo simulations of the 129Xe NMR line shapes of xenon adsorbed in (±)-[Co(en)3]Cl3. J. Phys. Chem. B 110, 11120–11127 (2006).