On the total number of parts functions associated with ranks of partitions modulo 5 and 7

The Ramanujan Journal - Tập 58 - Trang 1201-1243 - 2021
Renrong Mao1
1Department of Mathematics, Soochow University, Suzhou, People’s Republic of China

Tóm tắt

Recently, Andrews proved congruences for the total number of parts functions associated with ranks of partitions modulo 5 and 7. In this paper, applying the method of Atkin and Swinnerton-Dyer, we establish identities for these functions from which Andrews’ congruences modulo 5 follow immediately. In particular, the generating functions for total number parts functions associated with ranks of partitions modulo 7 turn out to be theta-functions.

Tài liệu tham khảo

Ahlgren, S., Treneer, S.: Rank generating functions as weakly holomorphic modular forms. Acta Arith. 133(3), 267–279 (2008) Andrews, G.E.: The Ramanujan–Dyson identities and George Beck’s congruence conjectures. Int. J. Numb. Theory 17(2), 239–249 (2021) Andrews, G.E., Garvan, F.G.: Dyson’s crank of a partition. Bull. Am. Math. Soc. (N.S.) 18(2), 167–171 (1988) Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part III. Springer, New York (2012) Atkin, A.O.L., Swinnerton-Dyer, H.P.F.: Some properties of partitions. Proc. Lond. Math. Soc. 3(4), 84–106 (1954) Berndt, B.C.: Ramanujan’s Notebook, Part III. Springer-Verlag, New York (1991) Berndt, B.C., Chan, H.H., Chan, S.H., Liaw, W.-C.: Cranks and dissections in Ramanujan’s lost notebook. J. Comb. Theory Ser. A 109(1), 91–120 (2005) Chan, S.H.: Generalized Lambert series identities. Proc. Lond. Math. Soc. (3) 91(3), 598–622 (2005) Chan, S.H., Mao, R., Osburn, R.: Variations of Andrews–Beck type congruences. J. Math. Anal. Appl. 495(2), 124771 (2021) Chern, S.: Weighted partition rank and crank moments. I. Andrews-Beck type congruences, preprint Dyson, F.J.: Some guesses in the theory of partitions. Eureka 8, 10–15 (1944) Ekin, A.B.: The rank and the crank in the theory of partitions, D.Phil. Thesis, University of Sussex (1993) Frye, J., Garvan, F.G.: Automatic Proof of Theta-Function Identities, Elliptic integrals, elliptic functions and modular forms in quantum field theory, 195–258. Texts Monogr. Symbol. Comput, Springer, Cham (2019) Garvan, F.G.: New combinatorial interpretations of Ramanujan’s partition congruences mod 5,7 and 11. Trans. Am. Math. Soc. 305(1), 47–77 (1988) Lewis, R.: The components of modular forms. J. Lond. Math. Soc. 52, 245–254 (1995) Ramanujan, S.: Some properties of \(p(n)\), the number of partitions of \(n\). Proc. Cambridge Philos. Soc. 19, 210–213 (1919) Robins, S.: Generalized Dedekind \(\eta \)-products, The Rademacher Legacy to Mathematics, University Park, PA, 1992, In: Contemp. Math., vol. 166, Amer. Math. Soc., Providence RI, pp. 119–128 (1994)