Ion Transport in Nanofluidic Devices for Energy Harvesting
Tài liệu tham khảo
Chu, 2012, Opportunities and challenges for a sustainable energy future, Nature, 488, 294, 10.1038/nature11475
Lewis, 2006, Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. USA, 103, 15729, 10.1073/pnas.0603395103
Siria, 2017, New avenues for the large-scale harvesting of blue energy, Nat. Rev. Chem., 1, 10.1038/s41570-017-0091
Straub, 2016, Pressure-retarded osmosis for power generation from salinity gradients: is it viable?, Energy Environ. Sci., 9, 31, 10.1039/C5EE02985F
Ramon, 2011, Membrane-based production of salinity-gradient power, Energy Environ. Sci., 4, 4423, 10.1039/c1ee01913a
Gotter, 1998, Electrophorus electricus as a model system for the study of membrane excitability, Comp. Biochem. Physiol. A, 119, 225, 10.1016/S1095-6433(97)00414-5
El-Sayed, 1992, On the molecular mechanisms of the solar to electric energy conversion by the other photosynthetic system in nature, bacteriorhodopsin, Acc. Chem. Res., 25, 279, 10.1021/ar00019a002
Feng, 2017, Bioinspired energy conversion in nanofluidics: a paradigm of material evolution, Adv. Mater., 29, 1702773, 10.1002/adma.201702773
Sparreboom, 2009, Principles and applications of nanofluidic transport, Nat. Nanotechnol., 4, 713, 10.1038/nnano.2009.332
Xiao, 2016, Biomimetic solid-state nanochannels: from fundamental research to practical applications, Small, 12, 2810, 10.1002/smll.201600359
Zhu, 2019, Ion/molecule transportation in nanopores and nanochannels: From critical principles to diverse functions, J. Am. Chem. Soc., 141, 8658, 10.1021/jacs.9b00086
Zhang, 2018, Wettability and applications of nanochannels, Adv. Mater., 31, 1804508, 10.1002/adma.201804508
Pérez-Mitta, 2019, Molecular design of solid-state nanopores: fundamental concepts and applications, Adv. Mater., 31, e1901483, 10.1002/adma.201901483
Lyklema, 2005, Vol. 5
Grahame, 1947, The electrical double layer and the theory of electrocapillarity, Chem. Rev., 41, 441, 10.1021/cr60130a002
Delahay, 1965
Brown, 2016, Effect of electrolyte concentration on the stern layer thickness at a charged interface, Angew. Chem. Int. Ed., 55, 3790, 10.1002/anie.201512025
Van der Heyden, 2005, Streaming currents in a single nanofluidic channel, Phys. Rev. Lett., 95, 116104, 10.1103/PhysRevLett.95.116104
Van der Heyden, 2006, Electrokinetic energy conversion efficiency in nanofluidic channels, Nano Lett., 6, 2232, 10.1021/nl061524l
Guo, 2010, Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater., 20, 1339, 10.1002/adfm.200902312
Rice, 1965, Electrokinetic flow in a narrow cylindrical capillary, J. Phys. Chem., 69, 4017, 10.1021/j100895a062
Daiguji, 2004, Electrochemomechanical energy conversion in nanofluidic channels, Nano Lett., 4, 2315, 10.1021/nl0489945
Siria, 2013, Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube, Nature, 494, 455, 10.1038/nature11876
Fair, 1971, Reverse electrodialysis in charged capillary membranes, J. Chem. Phys., 54, 3307, 10.1063/1.1675344
Anderson, 1989, Colloid transport by interfacial forces, Annu. Rev. Fluid Mech., 21, 61, 10.1146/annurev.fl.21.010189.000425
Cheng, 2010, Nanofluidic diodes, Chem. Soc. Rev., 39, 923, 10.1039/B822554K
Wei, 1997, Current rectification at quartz nanopipet electrodes, Anal. Chem., 69, 4627, 10.1021/ac970551g
Karnik, 2007, Rectification of ionic current in a nanofluidic diode, Nano Lett., 7, 547, 10.1021/nl062806o
Vlassiouk, 2007, Nanofluidic diode, Nano Lett., 7, 552, 10.1021/nl062924b
Gao, 2018, Kirigami nanofluidics, Mater. Chem. Front., 2, 475, 10.1039/C7QM00620A
Siwy, 2004, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc., 126, 10850, 10.1021/ja047675c
Xiao, 2016, Enhanced stability and controllability of an ionic diode based on funnel-shaped nanochannels with an extended critical region, Adv. Mater., 28, 3345, 10.1002/adma.201505842
Xiao, 2017, A tunable ionic diode based on a biomimetic structure-tailorable nanochannel, Angew. Chem. Int. Ed., 56, 8168, 10.1002/anie.201704137
Zhu, 2018, Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system, Sci. Adv., 4, eaau1665, 10.1126/sciadv.aau1665
Zhang, 2016, Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels, Nano Today, 11, 61, 10.1016/j.nantod.2015.11.001
Osterle, 1964, Electrokinetic energy conversion, J. Appl. Mech., 31, 1, 10.1115/1.3629580
Daiguji, 2006, Theoretical study on the efficiency of nanofluidic batteries, Electrochem. Commun., 8, 1796, 10.1016/j.elecom.2006.08.003
Ren, 2008, Slip-enhanced electrokinetic energy conversion in nanofluidic channels, Nanotechnology, 19, 195707, 10.1088/0957-4484/19/19/195707
Hsu, 2017, Power generation by a pH-regulated conical nanopore through reverse electrodialysis, J. Power Sources, 366, 169, 10.1016/j.jpowsour.2017.09.022
Feng, 2016, Single-layer MoS2 nanopores as nanopower generators, Nature, 536, 197, 10.1038/nature18593
Majumder, 2005, Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes, Nature, 438, 44, 10.1038/438044a
Fornasiero, 2008, Ion exclusion by sub-2-nm carbon nanotube pores, Proc. Natl. Acad. Sci. USA, 105, 17250, 10.1073/pnas.0710437105
Zhang, 2019, Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes, Nature, 570, 349, 10.1038/s41586-019-1303-3
Su, 2018, Anomalous pore-density dependence in nanofluidic osmotic power generation, Chin. J. Chem., 36, 417, 10.1002/cjoc.201800067
Kim, 2019, 2D nanosheets and their composite membranes for water, gas, and ion separation, Angew. Chem. Int. Ed., 58, 2, 10.1002/anie.201814349
Cheng, 2018, Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes, Nat. Nanotechnol., 13, 685, 10.1038/s41565-018-0181-4
Walker, 2017, Extrinsic cation selectivity of 2D membranes, ACS Nano, 11, 1340, 10.1021/acsnano.6b06034
Liu, 2016, Two-dimensional-material membranes: a new family of high-performance separation membranes, Angew. Chem. Int. Ed., 55, 13384, 10.1002/anie.201600438
Zhou, 2018, Electrically controlled water permeation through graphene oxide membranes, Nature, 559, 236, 10.1038/s41586-018-0292-y
Koltonow, 2016, IONIC TRANSPORT. Two-dimensional nanofluidics, Science, 351, 1395, 10.1126/science.aaf5289
Anasori, 2017, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98
Gao, 2017, Nanofluidics in two-dimensional layered materials: inspirations from nature, Chem. Soc. Rev., 46, 5400, 10.1039/C7CS00369B
Ji, 2017, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv. Funct. Mater., 27, 1603623, 10.1002/adfm.201603623
Xiao, 2018, Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes, Angew. Chem. Int. Ed., 57, 10123, 10.1002/anie.201804299
Shao, 2015, Self-assembled two-dimensional nanofluidic proton channels with high thermal stability, Nat. Commun., 6, 7602, 10.1038/ncomms8602
Ren, 2018, Voltage-gated ions sieving through 2D MXene Ti3C2Tx membranes, ACS Appl. Nano Mater., 1, 3644, 10.1021/acsanm.8b00762
Mouterde, 2019, Molecular streaming and its voltage control in ångström-scale channels, Nature, 567, 87, 10.1038/s41586-019-0961-5
Raidongia, 2012, Nanofluidic ion transport through reconstructed layered materials, J. Am. Chem. Soc., 134, 16528, 10.1021/ja308167f
Kang, 2019, 2D laminar membranes for selective water and ion transport, Adv. Funct. Mater., 29, 1902014, 10.1002/adfm.201902014
Yang, 2018, Janus membranes: creating asymmetry for energy efficiency, Adv. Mater., 30, e1801495, 10.1002/adma.201801495
Zhang, 2019, Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators, Nat. Commun., 10, 2920, 10.1038/s41467-019-10885-8
Celebi, 2014, Ultimate permeation across atomically thin porous graphene, Science, 344, 289, 10.1126/science.1249097
Yang, 2019, Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration, Science, 364, 1057, 10.1126/science.aau5321
Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477
Park, 2017, Maximizing the right stuff: the trade-off between membrane permeability and selectivity, Science, 356, eaab0530, 10.1126/science.aab0530
Chmiola, 2006, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, 313, 1760, 10.1126/science.1132195
Lukatskaya, 2017, Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy, 2, 17105, 10.1038/nenergy.2017.105
Fan, 2008, Gated proton transport in aligned mesoporous silica films, Nat. Mater., 7, 303, 10.1038/nmat2127
Hwang, 2016, Enhanced energy harvesting by concentration gradient-driven ion transport in SBA-15 mesoporous silica thin films, Lab Chip, 16, 3824, 10.1039/C6LC00844E
Liang, 2008, Mesoporous carbon materials: synthesis and modification, Angew. Chem. Int. Ed., 47, 3696, 10.1002/anie.200702046
Gao, 2014, High-performance ionic diode membrane for salinity gradient power generation, J. Am. Chem. Soc., 136, 12265, 10.1021/ja503692z
Zhang, 2017, Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion, J. Am. Chem. Soc., 139, 8905, 10.1021/jacs.7b02794
Karan, 2015, MEMBRANE FILTRATION. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science, 348, 1347, 10.1126/science.aaa5058
Marbach, 2019, Osmosis, from molecular insights to large-scale applications, Chem. Soc. Rev., 48, 3102, 10.1039/C8CS00420J
Lin, 2016, Salt gradient driven ion transport in solid-state nanopores: the crucial role of reservoir geometry and size, Phys. Chem. Chem. Phys., 18, 30160, 10.1039/C6CP06459K
Cao, 2017, Anomalous channel-length dependence in nanofluidic osmotic energy conversion, Adv. Funct. Mater., 27, 1604302, 10.1002/adfm.201604302
Bao, 2017, 3D porous hydrogel/conducting polymer heterogeneous membranes with electro-/pH-Modulated ionic rectification, Adv. Mater., 29, 1702926, 10.1002/adma.201702926
Zhang, 2016, Asymmetric multifunctional heterogeneous membranes for pH- and temperature-cooperative smart ion transport modulation, Adv. Mater., 28, 9613, 10.1002/adma.201602758
Mei, 2017, Buffer anions can enormously enhance the electrokinetic energy conversion in nanofluidics with highly overlapped double layers, Nano Energy, 32, 374, 10.1016/j.nanoen.2016.12.036
Li, 2019, Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting, Nat. Mater., 18, 608, 10.1038/s41563-019-0315-6
Antonietti, 2018, The concept of “noble, heteroatom-doped carbons,” their directed synthesis by electronic band control of carbonization, and applications in catalysis and energy materials, Adv. Mater., 30, e1706836, 10.1002/adma.201706836
Marino, 2016, Capacitive mixing with electrodes of the same kind for energy production from salinity differences, J. Phys. Condens. Matter, 28, 114004, 10.1088/0953-8984/28/11/114004
Brogioli, 2009, Extracting renewable energy from a salinity difference using a capacitor, Phys. Rev. Lett., 103, 058501, 10.1103/PhysRevLett.103.058501
Li, 2018, Hybrid nanochannel membrane-based on polymer/MOF for high-performance salinity gradient power generation, Nano Energy, 53, 643, 10.1016/j.nanoen.2018.09.015
Kim, 2010, Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels, Microfluid. Nanofluid., 9, 1215, 10.1007/s10404-010-0641-0
Gao, 2019, Understanding the giant gap between single-pore- and membrane-based nanofluidic osmotic power generators, Small, 15, e1804279, 10.1002/smll.201804279
Gillespie, 2012, High energy conversion efficiency in nanofluidic channels, Nano Lett., 12, 1410, 10.1021/nl204087f
Amatore, 2009, Theory of ion transport in electrochemically switchable nanoporous metallized membranes, ChemPhysChem, 10, 211, 10.1002/cphc.200800481
Oja, 2013, Nanoscale electrochemistry, Anal. Chem., 85, 473, 10.1021/ac3031702
Schroeder, 2017, An electric-eel-inspired soft power source from stacked hydrogels, Nature, 552, 214, 10.1038/nature24670
Krause, 1991, Chlorophyll fluorescence and photosynthesis: the basics, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313, 10.1146/annurev.pp.42.060191.001525
Heberle, 2000, Proton transfer reactions across bacteriorhodopsin and along the membrane, Biochim. Biophys. Acta, 1458, 135, 10.1016/S0005-2728(00)00064-5
Bhosale, 2006, Photoproduction of proton gradients with pi-stacked fluorophore scaffolds in lipid bilayers, Science, 313, 84, 10.1126/science.1126524
Steinberg-Yfrach, 1998, Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane, Nature, 392, 479, 10.1038/33116
Gust, 2001, Mimicking photosynthetic solar energy transduction, Acc. Chem. Res., 34, 40, 10.1021/ar9801301
Xie, 2014, Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane, Nat. Chem., 6, 202, 10.1038/nchem.1858
Xie, 2014, Photoelectric conversion based on proton-coupled electron transfer reactions, J. Am. Chem. Soc., 136, 7857, 10.1021/ja503491k
Zhang, 2018, Bioinspired heterogeneous ion pump membranes: unidirectional selective pumping and controllable gating properties stemming from asymmetric ionic group distribution, J. Am. Chem. Soc., 140, 1083, 10.1021/jacs.7b11472
Zhang, 2016, "Uphill" cation transport: A bioinspired photo-driven ion pump, Sci. Adv., 2, e1600689, 10.1126/sciadv.1600689
Farquhar, 1982, Stomatal conductance and photosynthesis, Annu. Rev. Plant. Physiol., 33, 317, 10.1146/annurev.pp.33.060182.001533
Steinberg-Yfrach, 1997, Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres, Nature, 385, 239, 10.1038/385239a0
Mora, 2018, Proton-coupled electron transfer in artificial photosynthetic systems, Acc. Chem. Res., 51, 445, 10.1021/acs.accounts.7b00491
Zeng, 2002, Active transport of Ca2+ by an artificial photosynthetic membrane, Nature, 420, 395, 10.1038/nature01208
Horn, 2005, Photocurrents generated by bacteriorhodopsin adsorbed on nano-black lipid membranes, Biophys. J., 89, 1046, 10.1529/biophysj.105.059550
Minkin, 2004, Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds, Chem. Rev., 104, 2751, 10.1021/cr020088u
Siwy, 2002, Fabrication of a synthetic nanopore ion pump, Phys. Rev. Lett., 89, 198103, 10.1103/PhysRevLett.89.198103
Zhang, 2013, Bioinspired artificial single ion pump, J. Am. Chem. Soc., 135, 16102, 10.1021/ja4037669
Xiao, 2019, Artificial light-driven ion pump for photoelectric energy conversion, Nat. Commun., 10, 74, 10.1038/s41467-018-08029-5
Yang, 2019, Photo-induced ultrafast active ion transport through graphene oxide membranes, Nat. Commun., 10, 1171, 10.1038/s41467-019-09178-x
Wen, 2010, Bio-inspired photoelectric conversion based on smart-gating nanochannels, Adv. Funct. Mater., 20, 2636, 10.1002/adfm.201000239
Zhang, 2016, Alternating current output from a photosynthesis-inspired photoelectrochemical cell, Nano Energy, 28, 188, 10.1016/j.nanoen.2016.08.029
Betz, 1987, Photon energy conversion and storage with a light-driven insertion reaction, J. Appl. Phys., 62, 4597, 10.1063/1.339056
Bungs, 1997, Electrochemical and photoelectrochemical insertion and transport of hydrogen in pyrite, J. Phys. Chem., 101, 1844
Tributsch, 2000, Light driven proton pumps, Ionics, 6, 161, 10.1007/BF02374062
Xiao, 2019, Photo-driven ion transport for a photodetector based on an asymmetric carbon nitride nanotube membrane, Angew. Chem. Int. Ed., 58, 12574, 10.1002/anie.201907833
White, 2018, Conversion of visible light into ionic power using photoacid-dye-sensitized bipolar ion-exchange membranes, Joule, 2, 94, 10.1016/j.joule.2017.10.015
White, 2017, Observation of photovoltaic action from photoacid-modified nafion due to light-driven ion transport, J. Am. Chem. Soc., 139, 11726, 10.1021/jacs.7b00974
Wang, 2019, Light-driven active proton transport through photoacid- and photobase-doped Janus graphene oxide membranes, Adv. Mater., 31, e1903029, 10.1002/adma.201903029
Shaulsky, 2015, Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat, Environ. Sci. Technol., 49, 5820, 10.1021/es506347j
Graf, 2019, Light-enhanced blue energy generation using MoS2 nanopores, Joule, 3, 1549, 10.1016/j.joule.2019.04.011
Sowa, 2008, Bacterial flagellar motor, Q. Rev. Biophys., 41, 103, 10.1017/S0033583508004691
Gadsby, 2009, Ion channels versus ion pumps: the principal difference, in principle, Nat. Rev. Mol. Cell Biol., 10, 344, 10.1038/nrm2668