An open IoT platform for the management and analysis of energy data

Future Generation Computer Systems - Tập 92 - Trang 1066-1079 - 2019
Fernando Terroso-Saenz1, Aurora González-Vidal1, Alfonso P. Ramallo-González1, Antonio F. Skarmeta1
1Department of Information and Communications Engineering, Computer Science Faculty, University of Murcia, Spain

Tài liệu tham khảo

Odyssee Mure project, Energy efficiency trends in buildings in the EU, lessons from the ODYSSEE MURE project, 2012. http://www.odyssee-mure.eu/publications/br/energy-efficiency-in-buildings.html. Buildings Energy Data Book, Buildings share of U.S. primary energy consumption stats. http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=1.1.3. GeSI, GeSI smarter2020 report. http://gesi.org/SMARTer2020. Coley, 2012, A comparison of structural and behavioural adaptations to future proofing buildings against higher temperatures, Build. Environ., 55, 159, 10.1016/j.buildenv.2011.12.011 Project iNSPiRe - Development of Systemic Packages for Deep Energy Renovation of Residential and Tertiary Buildings including Envelope and Systems, 2014. http://inspirefp7.eu. Vellei, 2016, The effect of real-time context-aware feedback on occupants heating behaviour and thermal adaptation, Energy Build., 123, 179, 10.1016/j.enbuild.2016.03.045 Stankovic, 2014, Research directions for the internet of things, IEEE Internet of Things J., 1, 3, 10.1109/JIOT.2014.2312291 Darby, 2010, Smart metering: What potential for householder engagement?, Build. Res. Inf., 38, 442, 10.1080/09613218.2010.492660 Desley, 2013, The effectiveness of energy feedback for conservation and peak demand: A literature review, Open J. Energy Effic., 2013 M.V. Moreno, A.F. Skarmeta, L. Dufour, D. Genoud, A.J. Jara, Exploiting IoT-based sensed data in smart buildings to model its energy consumption, 2015 IEEE International Conference on Communications, ICC, 2015, pp. 698–703. http://dx.doi.org/10.1109/ICC.2015.7248403. Simcock, 2014, Factors influencing perceptions of domestic energy information: Content, source and process, Energy Policy, 65, 455, 10.1016/j.enpol.2013.10.038 Zdravković, 2016, Survey of Internet-of-Things platforms, 216 Molina-Solana, 2017, Data science for building energy management: A review, Renew. Sustain. Energy Rev., 70, 598, 10.1016/j.rser.2016.11.132 Mineraud, 2016, A gap analysis of internet-of-things platforms, Comput. Commun., 89, 5, 10.1016/j.comcom.2016.03.015 Zhou, 2016, Big data driven smart energy management: From big data to big insights, Renew. Sustain. Energy Rev., 56, 215, 10.1016/j.rser.2015.11.050 Simmhan, 2013, Cloud-based software platform for big data analytics in smart grids, Comput. Sci. Eng., 15, 38, 10.1109/MCSE.2013.39 A. Kumbhare, Y. Simmhan, V. Prasanna, Cryptonite: A secure and performant data repository on public clouds, 2012 IEEE Fifth International Conference on Cloud Computing, 2012, pp. 510–517. http://dx.doi.org/10.1109/CLOUD.2012.109. A. Ishii, T. Suzumura, Elastic stream computing with clouds, 2011 IEEE 4th International Conference on Cloud Computing, 2011, pp. 195–202. http://dx.doi.org/10.1109/CLOUD.2011.11. Vastardis, 2016, A user behaviour-driven smart-home gateway for energy management, J. Ambient Intell. Smart Environ., 8, 583, 10.3233/AIS-160403 Ożadowicz, 2016, An event-driven building energy management system enabling active demand side management, 1 Klein, 2012, Coordinating occupant behavior for building energy and comfort management using multi-agent systems, Autom. Constr., 22, 525, 10.1016/j.autcon.2011.11.012 N. Li, J.-y. Kwak, B. Becerik-Gerber, M. Tambe, Predicting HVAC energy consumption in commercial buildings using multiagent systems, Proceedings of the 30th International Symposium on Automation and Robotics in Construction and Mining, ISARC, 2013. C. Alcaraz, I. Agudo, D. Nunez, J. Lopez, Managing incidents in smart grids a la cloud, 2011 IEEE Third International Conference on Cloud Computing Technology and Science, 2011, pp. 527–531. http://dx.doi.org/10.1109/CloudCom.2011.79. Moreno, 2014, How can we tackle energy efficiency in iot basedsmart buildings?, Sensors, 14, 9582, 10.3390/s140609582 Botta, 2016, Integration of cloud computing and Internet of Things: A survey, Future Gener. Comput. Syst., 56, 684, 10.1016/j.future.2015.09.021 Zhou, 2017, Security and privacy for cloud-based IoT: Challenges, IEEE Commun. Mag., 55, 26, 10.1109/MCOM.2017.1600363CM T. Zahariadis, A. Papadakis, F. Alvarez, J. Gonzalez, F. Lopez, F. Facca, Y. Al-Hazmi, FIWARE Lab: Managing resources and services in a cloud federation supporting future internet applications, IEEE/ACM 7th International Conference on Utility and Cloud Computing, 2014, pp. 792–799. http://dx.doi.org/10.1109/UCC.2014.129. Kovacs, 2016, Standards-based worldwide semantic interoperability for IoT, IEEE Commun. Mag., 41 S. Sotiriadis, E.G.M. Petrakis, S. Covaci, P. Zampognaro, E. Georga, C. Thuemmler,An architecture for designing Future Internet (FI) applications in sensitive domains: Expressing the software to data paradigm by utilizing hybrid cloud technology, 13th IEEE International Conference on BioInformatics and BioEngineering 2013, pp. 1–6. http://dx.doi.org/10.1109/BIBE.2013.6701578. F. Ramparany, F.G. Marquez, J. Soriano, T. Elsaleh, Handling smart environment devices, data and services at the semantic level with the FI-WARE core platform, 2014 IEEE International Conference on Big Data, Big Data, 2014, pp. 14–20. http://dx.doi.org/10.1109/BigData.2014.7004417. A. Preventis, K. Stravoskoufos, S. Sotiriadis, E.G.M. Petrakis, Personalized motion sensor driven gesture recognition in the FIWARE cloud platform, 14th International Symposium on Parallel and Distributed Computing, 2015, pp. 19–26. http://dx.doi.org/10.1109/ISPDC.2015.10. Fernndez, 2016, Smartport: A platform for sensor data monitoring in a seaport based on fiware, Sensors, 16 Telefonica I+D, IoT Agent documentation, 2017. http://fiware-iot-stack.readthedocs.io. . Telefonica I+D, ORION context broker documentation, 2017. http://fiware-orion.readthedocs.io. Open Mobile Alliance (OMA) Specification, NGSI Context Management, 2010. http://www.openmobilealliance.org/release/NGSI/V1_0-20100803-C/OMA-TS-NGSI_Context_Management-V1_0-20100803-C.pdf. Telefonica I+D, COMET documentation, 2017. http://fiware-sth-comet.readthedocs.io. . Chen, 2017, Data quality of electricity consumption data in a smart grid environment, Renew. Sustain. Energy Rev., 75, 98, 10.1016/j.rser.2016.10.054 Ramallo-González, 2015, New method to reconstruct building environmental data, 10.26868/25222708.2015.2797 Etzion, 2010 NIST/SEMATECH, e-Handbook of Statistical Methods, 2012. http://www.itl.nist.gov/div898/handbook/. Telefonica I+D, PERSEO official repository, 2017. https://github.com/telefonicaid/perseo-fe. . Hu, 2014, Toward scalable systems for big data analytics: A technology tutorial, IEEE Access, 2, 652, 10.1109/ACCESS.2014.2332453 Genolini, 2010, KmL: k-means for longitudinal data, Comput. Stat., 25, 317, 10.1007/s00180-009-0178-4 Gonzlez-Vidal, 2016, Towards energy efficiency smart buildings models based on intelligent data analytics, Procedia Computer Science, 83, 994, 10.1016/j.procs.2016.04.213 ASHRAE, 2002